
Oct 25, 2005 1

 FormFactory

Template based web forms

Wolfgang Friebel

Oct 25, 2005 2

Motivation

● CGI scripts are often used to collect information
and send it by email or store the data in a database

● Frequently written by inexperienced users or
copied from Internet archives

● Usually not thoroughly checked for security holes
● Scripts tend to remain unmaintained, bugs stay in

the code as usage frequency is usually low
● Need for well maintained code
● Need to help inexperienced CGI writers

Oct 25, 2005 3

A real world example

● At DESY a malfunctioning web form was reported
by users in July this year

● One of the bugs found by K. Woller and corrected
● An analysis has shown that this code was derived

from “Matts Script Archive” and used in many
places at DESY

● Essential parts of the code are basically unchanged
since 1997 when the script was downloaded initially

● The script has still the bug and the site claims
“Downloaded over 2 million times since 1997” ...

Oct 25, 2005 4

A buggy part of the script

read(STDIN,$input,$ENV{'CONTENT_LENGTH'});

convert + into space, %xx into ASCII char

$input=&trans($input);

(@pairs) = split(/\&/, $input);

foreach $p (@pairs) {

 ($name,$value) = split(/\=/,$p);

 $name{$name}=$value;

}

Oct 25, 2005 5

A buggy part of the script

read(STDIN,$input,$ENV{'CONTENT_LENGTH'});

convert + into space, %xx into ASCII char

$input=&trans($input);

(@pairs) = split(/\&/, $input);

foreach $p (@pairs) {

 ($name,$value) = split(/\=/,$p ,2);

 $name{$name}=$value;

}

Oct 25, 2005 6

A buggy part of the script

read(STDIN,$input,$ENV{'CONTENT_LENGTH'});

convert + into space, %xx into ASCII char

$input=&trans($input); #convert %26 into &

(@pairs) = split(/\&/, $input); # wrong split

foreach $p (@pairs) {

 ($name,$value) = split(/\=/,$p ,2);

 $name{$name}=$value;

}

Oct 25, 2005 7

Conclusion

● Writing or adapting CGI scripts is simple
● Finding bugs in CGI scripts is much harder

● do expect and handle arbitrary input
● be prepared for failures related to network, ...

● Writing secure CGI scripts is very hard as well
● unintended interactions with the OS by blindly

passing input to the shell
● checking for all possible side effects

● Do not try reinventing the wheel, reuse software

Oct 25, 2005 8

Available software

● Commercial web editors
● can create web forms
● but little support for postprocessing input
● resulting script is monolithic, may rely on proprietary

libraries, databases etc.
● Searching the Internet for solutions

● overwhelming number of hits
● many very simple scripts and commercial offers
● no really good tool found

● Perl as a toolbox with thousands of modules
● CGI.pm is de facto standard

Oct 25, 2005 9

Design principles

● Separation of program logic, data and layout as
much as possible

● known as MVC (model, view, controller) design
● Use as much existing code as possible
● keep solution simple and modular
● Simple forms should not require code to be written
● Allow for complicated tasks

Oct 25, 2005 10

The Model View Controller Architecture

Controller

View Model Database

1. send request from browser
2. controller gets info from model
3.model is stored in database
4. controller invokes view
5. view renders next screen

taken from book “agile web development with rails”

Oct 25, 2005 11

Selection of tools: Program flow

● CGI as the underlying base class
● CGI::Application to split the task (CGI processing

states), many plugins available
● AnyTemplate plugin to be able using templates

● could also use a specific plugin for a given templating
system

● ValidateRM plugin to enable form validation
● is calling Data::FormValidator

Oct 25, 2005 12

CGI.pm and its subclasses

● should be used in all perl based CGI scripts
● free you from parsing HTTP messages
● give easy access to script parameters:

use CGI qw/:standard/;

@names = param();

$email = param('email');

● help you in debugging your script
use CGI::Carp qw(fatalsToBrowser);

● assist you in generating HTML tag pairs
print h1('Chapter 1');

Oct 25, 2005 13

Selection of tools: Data model

● describe the data using attribute hashes (name,
type, ...)

 payment => { label => 'Payment method',

 fieldtype => 'select',

 value => ['cash', 'visa'],

 labels => { cash => 'Cash',

 visa => 'Visa Card'},

 dbtype => 'varchar (5)' }, ...

● DBI module for storing the data in a broad range of
available databases (mysql, Oracle, SQLite, ...)

● Ima::DBI for lazy loading and SQL encapsulation
● Net::SMTP for data transport by email

Oct 25, 2005 14

Advantages of using Ima::DBI

● delays opening of DB connection until required
● Guarantees only one DB connection per DB

● important for persistent applications
● Only one prepared handle per SQL statement
● Encourages use of bind parameters and columns
● Helps keeping SQL statements in a central place
● Can do extra (taint) checks for input data

Oct 25, 2005 15

Sample Ima::DBI usage
 package Foo;

 use base qw(Ima::DBI);

 # Set up database connections (but don't connect yet)

 Foo->set_db('Users', 'dbi:Oracle:Foo', 'admin', 'passwd');

 # Set up SQL statements to be used through out the program.

 Foo->set_sql('FindUser', <<"SQL", 'Users');

 SELECT *

 FROM Users

 WHERE Name LIKE ?

 SQL

 package main;

 $obj = Foo->new;

 my $sth = $obj->sql_FindUser; # Does connect & prepare

 $sth->execute('Fri%'); # bind_params & execute.

 @names = $sth->fetchall;

Oct 25, 2005 16

Selection of tools: Layout

● Use of cascading style sheets (CSS)
● provide CSS sample files, as support for a wide

range of browsers is tricky (Netscape4!)
● style of page changes without touching its content
● Template::Toolkit to write the HTML code

● advantage: access to all data visible within CGI, even
access to database

● used in large projects (sympa mailing list manager)
● other templating systems possible(HTML::Template,

Petal, ...)

Oct 25, 2005 17

Sample page without CSS

Oct 25, 2005 18

Sample page with CSS

Oct 25, 2005 19

The Template Toolkit (TT2)

● very powerful and popular among the myriad of perl
based templating systems (-> “badger book”)

● well suited to structure pages
[% INCLUDE header %]

[% INCLUDE menu %]

[% INCLUDE maintext %]

[% INCLUDE footer %]
● can pass variables to modify

 page contents
● can access DB's directly

Oct 25, 2005 20

Sample page using Template Toolkit

Oct 25, 2005 21

Template toolkit sample code
The following data have been entered by you:

[%- USE CGI %]

[%- params = CGI.param() %]

[%- FOREACH par = params %]

 [%- NEXT IF par == 'submit' %]

 [%- NEXT IF NOT form.item.$par %]

 [%- NEXT IF form.item.$par.fieldtype == 'hidden' %]

 [%- IF form.item.$par.label %]

 [%- label = form.item.$par.label %]

 [%- ELSE %]

 [%- label = par %]

 [%- END %]

 [%- label %] = [% CGI.param(par) %]

[% END %]

Oct 25, 2005 22

Putting it all together: FormFactory

● work in progress (perl module)
● FormFactory integrates above mentioned pieces
● reads and parses a config file
● implements the workflow

● form presentation
● form validation
● results presentation (in Web browser)
● results postprocessing (store in DB, email)

● about 500 lines of code (without doc)
● directly calling perl modules containing about

30 000 LOC

Oct 25, 2005 23

The CGI script

● is to my knowledge bug free:

 #!/usr/local/bin/perl

 use FormFactory;

 my $webapp = FormFactory->new();

 $webapp->run();

● but could still be improved ;-)
● use strict
● use warnings
● taint checks on

Oct 25, 2005 24

The config file
[general]

 title = Notebooks at DESY

 style = /computing/style2.css

 vardefs = notebook.def

[mail]

 mailto = wolfgang.friebel@desy.de, $email

 mailfrom = uco-zeuthen@desy.de

 mailsubject = notebook mac address registration for $name

[db]

 dbname = mysql:test

 dbuser = wf

 dbpass = yyy

 dbtable = macs

[form]

...

Oct 25, 2005 25

Form definition
 [form]

 next_runmode = process_template(results)

 title = Registration Form

 # mandantory fields do start with an asterix

 *name

 *firstname

 *email

 phone

 hostname

 # additional text in the form starts with a colon

 : Enter the MAC addreses in the form xx:xx:xx:xx:xx:xx for
one or two interfaces

 ethernet

 wlan

 # buttons are denoted by angle brackets

 <submit>

Oct 25, 2005 26

Workflow for Template processing

● not yet available (for the moment a fixed schema is
used)
[results]

 next_runmode = process_template(mailresults)

 (results)

[mailresults]

 # the parameters from the [mail] section should be here

 next_runmode = update_db(storeresults)

 (letter)

[storeresults]

 # the parameters from the [db] section should be here

 dbtable = macs

● process_template and update_db are procedures
called in FormFactory using CGI::Application

Oct 25, 2005 27

A sample form

Oct 25, 2005 28

Entering incomplete and invalid data

Oct 25, 2005 29

Entering an invalid MAC address

Oct 25, 2005 30

Results on screen

Oct 25, 2005 31

Results as Email to User

Oct 25, 2005 32

Results to Maintainer

Oct 25, 2005 33

Used already elsewhere

Oct 25, 2005 34

Summary

● perl offers a huge amount of high quality modules
● designing powerful applications gets easier
● can be difficult to find the right modules from the

almost 9000 ones offered
● some of the modules used here are fairly new or got

popular only recently
● FormFactory used up to now for

● workshop registration
● MAC address registration of notebooks

● Different people responsible for parts of the task
● DB, CSS, web content, processing of data

Oct 25, 2005 35

Outlook

● to do: better definition of workflow in the config file
● Ease access to database using Class::DBI
● Do support more form elements
● Provide more templates for common tasks
● Try to use Catalyst, a very poweful MVC

framework in perl (catalyst.perl.org)
● even less code to write
● much more integrated and rapidly evolving

● More fine grained control by using CGI::Ajax
● Asynchronously call Javascript using XML

Oct 25, 2005 36

What others do with the web

● Web 2.0
● At recent EuroOSCON many people reported to

work on AJAX or to have it in production
● most popular combo: php+ajax
● popular MVC frameworks

● in Java: Struts, Tapestry
● in Ruby: Ruby on Rails

