"Neue" Detektor-Technologien an Beschleunigern in der Teilchenphysik

Ingo Bloch Technisches Seminar DESY, 19. November 2013

Inhalt

- Kurze Einführung
- Senr Dersönliche Janz und gar nicht vollständig > Beispiele f
 ür Anforderungen an Detektoren
 - Im Proton-Proton Large Hadron Collider
 - In einer möglichen Elektron-Positron Machine
- >Gasdetektoren, Beispiel MICROMEGA, GEM
- > Silizium-Photomultiplier
 - Anwendung in Calice
 - Design f
 ür Energy-/Particle-Flow

» Kurze Particle-Flow Erläuterung

- Silizium Spurdetektoren
 - Streifen (hier in Z :)) mit CO, Kühlungs-Intermezzo

> Wir wollen das Kleinste vom Kleinsten "sehen"

> Mikroskop

- 1. Licht scheint auf zu untersuchendes Objekt
- 2. Objekt (z.B. Zelle) modifiziert Licht
- 3. Modifiziertes Licht wird **zum Detektor** geführt (*zum Auge*)
- 4. Modifiziertes Licht wird **rekonstruiert** (*Gehirn*)
- 5. Analyse von rekonstruiertem Licht erlaubt Rückschluss auf Ursprung der Lichtmodifikation (da war eine Zelle unterm Mikroskop!)

>Analogie zum Mikroskop

>Analogie zum Mikroskop

>Analogie zum Mikroskop

Teilchennachweis – grundsätzliche Methoden

► Entweder Spur von geladenen Teichen mit wenig Störung der Flugrichtung verfolgen – Teilchen ionisieren und regen Atome/Moleküle an → Folge Spur mittels Material mit niedrigem Z

→ Spurdetektoren

und niedriger Dichte

Oder Teilchen vollständig absorbieren und deponierte Energie messen, mittels Material mit hohem Z und hoher Dichte

Teilchennachweis – ein Ereignis

Inhalt

Kurze Einführung

> Beispiele f ür Anforderungen an Detektoren

- Im Proton-Proton Large Hadron Collider
- In einer möglichen Elektron-Positron Machine
- Gasdetektoren, Beispiel MICROMEGA, GEM
- Silizium-Photomultiplier
 - Anwendung in Calice
 - Design für Energy-/Particle-Flow
 - » Kurze Particle-Flow Erläuterung
- Silizium Spurdetektoren

Pixel

Streifen (hier in Z :)) - mit CO₂ Kühlungs-Intermezzo

Ingo Bloch | Neue Detektortechnologien | 19 November 2013 | Seite 10

Beispiele – Anforderungen an Detektoren

Proton Proton (LHC)

- 20 / 40 MHz Kollisionsrate (50 / 25 ns zwischen 2 Ereignissen)
- 20 bis 150 Hintergrundereignisse überlagern das Hauptereignis (PileUp)
- Starke Strahlenbelastung durch hohen Teilchenfluss von Kollisionen

> Bis zu ~10¹⁶ n_{eq}/cm²

- Arbeitstemperaturen
 - Im Spurdetektor -30°C
 - > Ausserhalb Umgebungstemperatur

>Elektron Positron (ILC / CLIC)

- Kollisionen "mit Atempausen"
 - > Erlaubt triggerlose Auslese
 - > Ermöglicht Puls-Stromversorgung
- Kein Pileup, aber auch herausfordernde Untergründe, hauptsächlich durch Beam-Beam e+e- Erzeugung

Inhalt

Kurze Einführung

>Beispiele f ür Anforderungen an Detektoren

- Im Proton-Proton Large Hadron Collider
- In einer möglichen Elektron-Positron Machine

>Gasdetektoren, Beispiel MICROMEGA, GEM

Silizium-Photomultiplier

Anwendung in Calice

Design für Energy-/Particle-Flow

- » Kurze Particle-Flow Erläuterung
- Silizium Spurdetektoren
 - Streifen (hier in Z :)) mit CO₂ Kühlungs-Intermezzo

Pixel

Gasdetektoren: MICROMEGAs / GEMs

MicroMegas

Ingo Bloch | Neue Detektortechnologien | 19 November 2013 | Seite 13

Gasdetektoren: Micromegas

Gasdetektoren: GEM Prinzip

Marcello Abbrescia

HL-LHC ECFA

Inhalt

Kurze Einführung

>Beispiele f ür Anforderungen an Detektoren

- Im Proton-Proton Large Hadron Collider
- In einer möglichen Elektron-Positron Machine
- >Gasdetektoren, Beispiel MICROMEGA, GEM

>Silizium-Photomultiplier

Anwendung in Calice

Design f ür Energy-/Particle-Flow

» Kurze Particle-Flow Erläuterung

- Silizium Spurdetektoren
 - Streifen (hier in Z :)) mit CO, Kühlungs-Intermezzo

Basics of photodetection

Many photosensitive materials are semiconductors, but photoeffect can also be observed from gases and liquids.

Solid-state photon detectors

(Si) – Photodiodes (PIN diode)

- P(I)N type
- p layer very thin (<1 μm), as visible light is rapidly absorbed by silicon
- High QE (80% @ $\lambda\approx$ 700nm)
- Gain = 1

Avalanche photodiode (APD)

- High reverse bias voltage: typ. few 100 V
- Special doping profile → high internal field (>10⁵ V/cm) → avalanche multiplication
- Avalanche stops due to statistical fluctuations.
- Gain: typ. O(100)
- Rel. high gain fluctuations (excess noise from the avalanche). CMS ECAL APD: ENF = 2 @G=50.
- Very high sensitivity on temp. and bias voltage $\Delta G = 3.1\%/V$ and -2.4 %/K

Hamamatsu S8148. (140.000 pieces used in CMS barrel ECAL).

4-7

Christian.Joram@cem.ch

 $PIN \rightarrow APD \rightarrow Geiger mode Avalanche Photodiode (GM-APD)$

SIPM

AX-PET

How to obtain higher gain (= single photon detection) without suffering from excessive noise ?

Operate APD cell in Geiger mode (= full discharge), however with (passive/active) **quenching**.

Photon conversion + avalanche short circuit the diode. A single photon (or anything else) is sufficient!

A single-cell GM-APD is just a **binary** device (=switch). Info on N_{γ} is lost by the Geiger avalanche. It will become more interesting when we combine many cells in one device ...

And finally ... Digital SiPM

With the GM-APD being a binary device...

one could also conceive a fully digital SiPM, where the output is just the digital count of the number of fired cells.

Schematic representation of a blue sensitive pn structrue

Source: http://www.ketek.net/products/sipm-technology/microcell-construction/

PM vs SiPM

	ΡΜΤ	SiPM
QE (VIS)	0.2-0.4	0.2-0.7
Gain	10 ⁶ @ O(kV)	10 ⁶ @ O(50V)
Timing	T _r ~ O(1ns) TTS ~ O(100 ps)	T _r ~ O(1ns) TTS O(100 ps)
Dynamic range	O(10 ⁶)	O(10 ³)
ENF	1.1-1.5	~1
Dark noise rate	O(kHz/cm²)	O(MHz/mm ²)
Single photon sensitivity/ counting	≌/⊗	©/©
Magnetic field immunity	8	٢
Robustness & compactness	88	00

And finally ... Digital SiPM

With the GM-APD being a binary device...

one could also conceive a fully digital SiPM, where the output is just the digital count of the number of fired cells. Philips

Digital SiPM

Compared to the analog technology, the digital one (so far only offered by Philips) has a number of

advantages

- + Integration of bias supply, amp, TDC, counter...
- + Fast active quenching → no afterpulses
- + Possibility to de-activate noisy cells → potentially lower dark noise
- + Reduced sensitivity to voltage and temperature variations
- + Compactness
- + Possibility to add local intelligence

... problems shared with analog

- High dark noise (a discharging cell doesn't know whether it is digital or analog)
- Signal saturation (limited number of cells)
- ... and also has some drawbacks
- The local electronics is a source of heat → cooling advisable
- The readout functionality is designed into the sensor. In case of mismatch with the needs, relatively expensive modifications of the sensor/FPGA may be required.

Packaged module, as delivered to clients (DPC3400-22-44). Includes a 100 µm thick protective glass layer.

Front and back sides of a 64 channel digital tile (DPC6400-22-44) or (DPC3200-22-44)

38.5 x 38.5 mm²

SiPM in the ILC HCAL and ECAL (R&D)

High granularity hadronic calorimeter optimised for the Particle Flow measurement of multi-jets final state at the ILC

photo-detector requirements:

- insensitive to magnetic field (~ 5T)
- coupling with a scintillator (blue emission)
- stability (T-control or T-monitoring)
- rel. large dynamic range
- low cost

CALICE tests with MePHI/PULSAR, HAMAMATSU, KETEK SiPMs

216 tiles/layer (38 layers in total) ~8000 channels

e⁺ e⁻ collider (1 TeV) HCAL-Scintillator-laver model

Silizium – SiPMs in Kalorimetern

Particle Flow – verbesserte Energiemessung

Traditionelle Datenrekonstruktion

- "Hits" im Spurdetektor zu Spuren verbinden und Impuls der Teilchen bestimmen
- "Hits" im Kalorimeter zu Jets zusammenfassen und damit Energie des ursprünglichen Teilchens messen

>Energy/Particle Flow

 Vor Zusammenfassung von Kalo-Hits zu Jets, erst mit Spuren kombinieren, besten Messwert bestimmen und dann f
ür Jets bestbekannten Wert verwenden

Inhalt

Kurze Einführung

>Beispiele f ür Anforderungen an Detektoren

- Im Proton-Proton Large Hadron Collider
- In einer möglichen Elektron-Positron Machine
- >Gasdetektoren, Beispiel MICROMEGA, GEM
- >Silizium-Photomultiplier
 - Anwendung in Calice

Design f ür Energy-/Particle-Flow

» Kurze Particle-Flow Erläuterung

Silizium Spurdetektoren

Pixel

Streifen (hier in Z :)) - mit CO₂ Kühlungs-Intermezzo

Silizium: Streifen und Pixel

Silizium Streifendetektoren – n-Seiten Auslese

Neu: n-in-p Sensoren

- Einseitiger Prozess bei Herstellung → Günstiger
- Kann partiell verarmt betrieben werden, da p-n Übergang immer auf 10³ electrons 25 **Ausleseseite** 20
 - \rightarrow Strahlenhart
- Collected Charge Es werden Elektronen und nicht wie bei trad. p-in-n Löcher von der Auslese gesammelt
 - 10^{15} 10^{14} 5 → Schneller mit $\Phi_{\rm eq} \, [\rm cm^{-2}]$ weniger Ladungsverlust an Störstellen

15

10

5

p-in-n-FZ (500V)

n-in-p-Fz (1700V)

n-in-p-Fz (500V)

M.Moll - 09/2009

N. Unno, Trento 2012

References:

[1] G.Casse, VERTEX 2008 (p/n-FZ, 300µm, (-30°C, 25ns)

[2] I.Mandic et al., NIMA 603 (2009) 263 (p-FZ, 300µm, -20°C to -40°C, 25ns)

G. Kramberger, Vertex 2012

n-in-p-Fz (800

Silizium Streifendetektoren – ATLAS

> ATLAS Streifendetektor für HL-LHC Upgrade:

Extreme Strahlenbelastung; momentane Sensoren überstehen *L*~300 fb⁻¹

~140 PileUp Events überlagern Hauptereignis

- Problem: Mit momentaner Segmentierung / Streifenlänge erhält man potentiell mehrere Treffer pro Streifen
 - \rightarrow Unterteilung in mehr kürzere Streifen

HL-LHC Si-Streifenmodule in Zeuthen

>Eins der ersten in DESY gefertigten ATLAS Steifenmodule

Silizium Streifendetektoren – ATLAS

Silizium Streifendetektoren – CMS

CMS verfolgt Selbst-Trigger Konzept

> 2 sehr nah beeinander liegende Sensoren liefern Abschätzung der Spurkrümmung

- Outer tracker
 - High granularity for efficient track reconstruction beyond 140 PU
 - Two sensor "Pt-modules" to provide trigger information at 40 MHz for tracks with Pt≥2GeV
 - Improved material budget
- Pixel detector
 - Similar configuration as Phase 1 with 4 layers and 10 disks to cover up to $|\eta| = 4$
 - Thin sensors 100 μm; smaller pixels 30 x 100 μm
- R&D activities

J. Spalding @ EGFA HL-LHC 2013

- In progress for all components prototyping of 2S modules ongoing
- BE track-trigger with Associative Memories

90 µm pitch P = 2.72 W92 cm² active area 2.4 cm long strips + pixels 100 µm pitch

5 cm long strips (both sides)

P = 5.01 W

~ 44 cm² active area

Für HL-LHC ist Kühlung sehr wichtig da Sensoren bei niedriger Temperatur weniger Schaden durch die Strahlung erhalten

CO₂ cooling

5th Detector Workshop of the Helmholtz Alliance "Physics at the Terascale"

CO₂ Kühlung

CO₂ Kühlung

What happens inside a cooling tube?

Heating a flow from liquid to gas

CO₂ Kühlung

CO₂ and safety

10

Inhalt

Kurze Einführung

>Beispiele f ür Anforderungen an Detektoren

- Im Proton-Proton Large Hadron Collider
- In einer möglichen Elektron-Positron Machine
- >Gasdetektoren, Beispiel MICROMEGA, GEM
- >Silizium-Photomultiplier
 - Anwendung in Calice

Design für Energy-/Particle-Flow

» Kurze Particle-Flow Erläuterung

Silizium Spurdetektoren

Pixel

Streifen (hier in Z :)) - mit CO₂ Kühlungs-Intermezzo

Silizium Pixel – 3D Sensoren

- Max. drift and depletion distance set by electrode spacing - reduced collection time and depletion voltage
- Very good performance at high fluences
- Production time and complexity to be investigated for larger scale production
- Used in ATLAS IBL

ATLAS IBL Sensor (Threshold: 1600 e p-irrad: $5x10^{15} n_{eq}/cm^2$ with 24 MeV protons n-irrad: $5x10^{15} n_{eq}/cm^2$ by nuclear reactor)

SCC34 CNM-3D, p-irrad, HV = 160V, Eff.=98.96%

From: Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip" (JINST 7 (2012) P1 1010)

Silizium Pixel – sehr dünne Sensoren

Thin sensor assemblies

Advacam

- **50 μm thin** with **20 μm and 50 μm active-edge** assemblies on standard thickness Timepix ASIC *(delivered July 2013)*
- **Excellent sensor quality**, few (<8) unconnected bumps
- Depletion at 15V
- 5 x assemblies tested at DESY

Micron Semiconductor + IZM

- + 100, 150, 200 μm pixel sensor (Timepix compatible)
- 3 x 100 um assemblies tested at DESY

18/09/2013

Szymon KULIS | Vertex Detector R&D for CLIC

Kleinere, schnellere, effizientere, strahlenhärtere, magnetfeldresistentere ... Sensoren. z.B.

- GEMs statt Driftkammern
- SiPMs statt PMs
- 3D Pixel statt 2D Pixel
- n-in-p statt p-in-n
- Fortschritt beim Verständnis von Strahlenschäden zusammen mit höherer Packungsdichte in Auslesechips erlaubt Silizium-Spur-Detektoren für HL-LHC
 - CO₂ Kühlung bringt notwendige niedrige Temperaturen bei gleichzeitiger Materialreduktion
- Weitere Integration (Auslese & Sensor in einem Guss) zu erwarten mit günstiger CMOS Technologie

