The CMS Beam Conditions and Radiation Monitoring System
(Principles, Hardware & Software)

M. Ohlerich
for the FCAL group

Technisches Seminar DESY Zeuthen
Introduction
CMS Detector

Proton bunch → Collisions

Collision → Detector signals → Filter → Interesting Event

Detector = sensitive and expensive device
Background & Perils

- Proton bunch
- Beam Halo
- Collision Remnants
- Beam control
- Detector has to be protected! → Monitor Beam Conditions

- mis-steering
- focusing
Analogy

Detector = Retina
 = level 1 trigger
 = radiation monitor

Brain = CE & SE

Analogy

Optic nerve
 = signal data line

Thalamus
 = level 2 trigger

Visual cortex
 = high level trigger

Protection by Monitoring and Emergency Shutdown

Eylid & Pupil
 = detector protection

Lens
 = final quadrupole
BRM

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Location</th>
<th>Sampling time</th>
<th>Function</th>
<th>Readout + Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passives TLD+Alanine</td>
<td>In CMS and UXC</td>
<td>Long term</td>
<td>Monitoring</td>
<td>---</td>
</tr>
<tr>
<td>RADMOR</td>
<td>18 monitors Around CMS</td>
<td>1s</td>
<td>Monitoring</td>
<td>Standard LHC (FESA)</td>
</tr>
<tr>
<td>BCM2 Diamonds</td>
<td>At rear of HF 14.4m</td>
<td>40 µs</td>
<td>Protection</td>
<td>Standard LHC (FESA)</td>
</tr>
<tr>
<td>BCM1L Diamonds</td>
<td>Pixel Volume 1.8m</td>
<td>Sub orbit ~ 5µs</td>
<td>Protection</td>
<td>CMS + Standard LHC (FESA)</td>
</tr>
<tr>
<td>BSC Scintillator</td>
<td>Front of HF 10.9m</td>
<td>Bunch by bunch</td>
<td>Monitoring</td>
<td>CMS Standalone</td>
</tr>
<tr>
<td>BCM1F Diamonds</td>
<td>Pixel volume 1.8m</td>
<td>Bunch by bunch</td>
<td>Monitoring + protection</td>
<td>CMS Standalone</td>
</tr>
</tbody>
</table>

1 Orbit ~ 90 µs, Bunch Spacing ~ 25 ns
BCM1F (& BCM1L)

Optical Fiber

Voltage supply

Assembled by W. Lange

Beam pipe
BCM1F details + Readout Electronics

Incident particle (energy E)

- E-field
 - $Q_{\text{induced}}(E)$: eh-pairs by ionization
 - $Q_{\text{collected}} \rightarrow I_{\text{signal}}$
- Signal amplification & shaping
- Laser Diode

Signal Area $\propto Q_{\text{collected}}$

Signal I_{signal} & shaping

100 ns (Bunch Spacing 25 ns)

optical receiver

optical

hv
Monitoring Issues

1. Monitoring Mode:

- **low signal rate**
 - “long time”
 - nothing
 → put threshold (discriminator) → **Count Rate Monitor**

- **(very) high signal rate**
 → **Level Monitor** (~ Leakage Current Monitor)
 (Threshold for Warning or Emergency Shutdown)
2. Detector Performance:

\[Q_{\text{induced}}(E) \geq Q_{\text{collected}}(\text{dose}) \]

\[CCE = \frac{Q_{\text{collected}}}{Q_{\text{induced}}} \]

→ Calibration/Adjustment

2. Environment:

Thresholds depend on baseline
→ Baseline Monitor

Baseline Shift due to temperature, electronic noise, etc
Digitization Electronics

- Optical receiver

- Discriminator
 - set thresholds
 - output logical on/off

- TDC
 - output start trigger & hit time

- ADC (Sampling)
 - 500 MB/s sampling
 - 8 channels
 - Ext./Int. Trigger
 - Interval adjust.
 - 16 MB (45 orbits)

- Control & Readout
- PC
Modes of Operation: Learning Mode

- ADC only
- Store on Orbit Clock (= ext. Trigger) 45 orbits (buffer full)
- Readout & Store/Treat Data online (½ sec dead time)
- Analyze Data offline / online (slow, Software)
- Useful ONLY at high Luminosity
 (11. Sept. low Luminosity → GBytes of baseline)
- Optimized – but not flexible
- Check for Bunch Filling and Bunch Timing

No Monitor !!
Modes of Operation: Maintenance Mode

- ADC only

- Use Self-Trigger / Ext. Trigger (flexible)

- Adjust Trigger and Acquisition Interval (e.g. few 100 ns)

- Readout & Store/Treat Data online (dead time much smaller)

- Analyze Data offline/SW (No precise Time Assignment)

- 11. Sept. OP Mode
 Useful for any signal rate
 - For Sensor Performance / Baseline / Calibration

- Flexible – but not optimized

No Monitor !! Ext. Trigger → BPTX
Data From 1st LHC Testrun

Offline Analysis:
Beam from one side, BPTX Trigger

One channel had bad cable

12 ns ≡ 3.6 m
Modes of Operation: Warning Mode

- ADC only
- Use Self-Trigger
- Store few orbits
- Readout & Store Data offline
- Analyze Data offline/SW (post-mortem analysis)
- Permanent Monitoring, but \textbf{NO online output for control}!!
- For Level Monitor, internal Trigger \rightarrow ext. Trigger out (to Control)
- fast, only hardware
- needs Baseline Monitoring for Trigger Thresholds
Modes of Operation: Count Rate Monitor

- ADC = Baseline Monitor & TDC Count Rate Monitor
- Discriminator Threshold adjusted w.r.t. Baseline
- TDC start trigger = Orbit clock (Time Reference)
- Readout & Store Data online (no dead time at low rates)
- Analyze Data online: Counting hits per Orbit, Timing Info
- Permanent Monitoring
- Permanent Online Info for Control
- fast (no Software-based Under-Threshold discrimination)
- Works only, if no pile-up!
What is still to do ...

• DAQ Software for Monitoring Mode (TDC) → Elena Castro

• Data Analysis Software / User Interface Performance → Ringo Schmidt

• Publishing Routines (DIP) → both

• Test of the Software (This cannot be done often enough!) → volunteers
FCAL Group (on Testbeam Darmstadt)
Thanks to all DESY People!

Special Thanks to UCO ;)

Goodbye!

Also thanks to GIMP!