
Authen::SASL - SASL in Perl for client/server
authentications

Patrick Boettcher

Technische Fachhochschule Wildau

patrick.boettcher@desy.de

March 2, 2004

SASL overview

• What is SASL? (theory

• How SASL works

• SASL in Perl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 1/8

What is SASL?

• SASL stands for ”Simple Authentication and Security

Layer”

• abstracts a wide range of authentication mechanisms

• even supports challenge-response-based

mechanisms like GSSAPI (Kerberos 5) or MD5

algorithms

• provides some generic functions on client- and

server-side

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 2/8

How does SASL work (1)

• there is an init, a new, a start and a step method

• the wanted mechanism must be given to the

SASL-library at the new-call

• start and step methods are used to handle the

authentication

• SASL gets user specific data via different callback

functions

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 3/8

How does SASL work (2)

new (AUTH MECH)

start

another step

needed
 step
yes

AUTH

DATA

AUTH

DATA

new (AUTH MECH)

start

another step

needed
step
 yes

ERROR
 ERROR

no
 no

Authentication

succesfull

no
no

Authentication

succesfull

Client
 Server

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 4/8

SASL implementations

• several implementations of SASL libraries exist

– Cyrus SASL (C library, most popular)

– GNU SASL (C library, not very matured)

– Authen::SASL::Perl (Perl, client only, less mech)

– Authen::SASL::Cyrus (Perl, same features like

Cyrus SASL)

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 5/8

Authen::SASL::Cyrus

• at first, no server functionality was available

• in ARCv2 server side SASL is necessary, so I had to

extend Perl’s Authen::SASL framework (i.e.

Authen::SASL::Cyrus) using XS language

• patches are on their way to CPAN; hopefully with the

end of March it is available to non-desy users

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 6/8

SASL in Perl for client authentication

• use Authen::SASL; includes the Perl SASL

framework

• client_new method creates an

Authen::SASL::Cyrus object

• example sasl-client.pl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 7/8

SASL in Perl for server authentication

• use Authen::SASL; includes the Perl SASL

framework

• server_new method creates an

Authen::SASL::Cyrus object

• example sasl-server.pl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 8/8

sasl-client.pl:

use strict;
use Authen::SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",
callback => {
user => \&getusername,
pass => \&getpassword,
}
);

Creating the Authen::SASL::Cyrus instance
my $conn = $sasl->client_new("service", "hostname.domain.tld");

Client begins always
sendreply($conn->client_start());

while ($conn->need_step) {
sendreply($conn->client_step(&getreply()));
}

if ($conn->code == 0) {
print STDERR "Negotiation succeeded.\n";

} else {
print STDERR "Negotiation failed.\n";
}

sub getusername
{
print "Username: ";
return <>;
}

sub getpassword
{
print "Password: ";
return <>;
}

sasl-server.pl:

use strict;
use Authen::SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",
callback => {
checkpass => \&checkpass,

8-2

canonuser => \&canonuser,
}
);

Creating the Authen::SASL::Cyrus instance
my $conn = $sasl->server_new("service");

Clients first string (maybe "", depends on mechanism)
Client has to start always
sendreply($conn->server_start(&getreply()));

while ($conn->need_step) {
sendreply($conn->server_step(&getreply()));
}

if ($conn->code == 0) {
print "Negotiation succeeded.\n";
} else {
print "Negotiation failed.\n";
}

sub checkpass
{
return 1;
}

8-3

sub canonuser
{
my ($username);
return $username;
}

The new ARC - A SASL based client/server
application

Patrick Boettcher

Technische Fachhochschule Wildau

patrick.boettcher@desy.de

March 2, 2004

ARCv2 overview

• ARC - tasks, history, rewriting

• ARCv2 internals

• How to use it

The new ARC - A SASL based client/server application March 2, 2004 1/18

ARC principle

• ARC is client/server application

• user command requests are shipped from a client to a

server

• server runs the mostly privileged commands in an

appropriate environment (privileged)

• server decides if the calling user is allowed to run the

command

• one can say, ARC is a secure RPC

The new ARC - A SASL based client/server application March 2, 2004 2/18

The history of ARC

• Originally written by Rainer Toebbicke in 1995/1996

• primarily to support administrators to manage the AFS

File-space and for acron

• Alf Wachsmann extends ARC to enable Kerberos V

authentication

The new ARC - A SASL based client/server application March 2, 2004 3/18

Weaknesses of ARC

• only Kerberos 4 authentication is possible

• it is triggered through the super-server ”inetd”

• originally released under a CERN license, was not

freely downloadable

• no comprehensive documentation

• sometimes no (complete) response is returned by the

server

The new ARC - A SASL based client/server application March 2, 2004 4/18

Expected features of ARCv2 (1)

• portability across a wide range of platforms (achieved

by using Perl)

• a very robust server has to be available (serve a high

number of requests, stand-alone server)

• Authentication has to support at least Kerberos 4 and

5 (SASL)

• ARCv2 command writing has to be easy

The new ARC - A SASL based client/server application March 2, 2004 5/18

Expected features of ARCv2 (2)

• a comprehensive documentation has to be available

• it should be free software, accessible by everybody

(CPAN)

The new ARC - A SASL based client/server application March 2, 2004 6/18

ARCv2 internals

• two connection types are existing

– protocol connection

– command connection

• run several ARCv2 commands within one protocol

connection; improves speed for more complex

commands

• for each command a new connection will be opened

(like FTP)

The new ARC - A SASL based client/server application March 2, 2004 7/18

Protocol connection

Client
ARCv2 server

C: ARC/2.0

S: AUTH GSSAPI,PLAIN

C: AUTHENTICATE GSSAPI

S: AUTHTYPE GSSAPI

C: SASL [....]

S: SASL [....]

[....]

C: CMD whoami

S: CMDPASV

141.34.19.211:58965

S: DONE

C: QUIT

encrypted command-connection

pboettch coming from hyade11.ifh.de [141.34.19.211] Port 58966

ARCv2 session

The new ARC - A SASL based client/server application March 2, 2004 8/18

Command environment

• the server runs the requested command in a separate

child process

• the STDIN and STDOUT of this process are

duplicated to pipes

• the server process reads and writes the data from/to

the command connection to these pipes and vice

versa

The new ARC - A SASL based client/server application March 2, 2004 9/18

Command data transfer

ARCv2

Client

Command
Terminal /

Script

out/

CommandRead-method

in/

CommandWrite-method

out-pipe/

stdin

in-pipe /

stdout

ARCv2

Server

encrypted

network

connection

The new ARC - A SASL based client/server application March 2, 2004 10/18

Usage of the client - arcx

• command line interface: arcx (ARC eXtended)

• parameters are like the old arc + some extensions

• Examples: (see arcx(3))

arcx whoami

arcx -h hyade11

cat /etc/passwd | arcx put /etc/passwd

arcx get /etc/passwd > /etc/passwd

The new ARC - A SASL based client/server application March 2, 2004 11/18

Usage of the server - arcxd

• arcxd is a command line script to start the

stand-alone server

• must be configured by a configuration file

• can fork into the background

• see arcxd(3)

The new ARC - A SASL based client/server application March 2, 2004 12/18

ARCv2 in Perl - client

• use Arc::Connection::Client;

includes the approp. class to use client functionality in

a Perl script

• my $arc = new Arc:: .. (...);

creates a Perl object

• several methods are available to run commands

• example arc-client.pl

The new ARC - A SASL based client/server application March 2, 2004 13/18

ARCv2 in Perl - server (1)

• use Arc::Server; includes the approp. class

to run the server in a Perl script

• my $arc = new Arc::Server(..);

creates a Perl object

• the parameters given at the new-call are influencing

the server a lot

• before starting the server it is important to configure

the environment (e.g. creating/extracting keys for

Kerberos V)

The new ARC - A SASL based client/server application March 2, 2004 14/18

ARCv2 in Perl - server (2)

• the method Start starts the server, including:

– listening on the given port

– accepting connections

– forking into background

• the method Interrupt ends the server

• example arc-server.pl

The new ARC - A SASL based client/server application March 2, 2004 15/18

Writing an ARCv2 command (1)

• self-made ARCv2 commands should be derive from

Arc::Command

• have to be a Perl class (have a new function, bless)

• have to implement a Execute method (entry

function for the server)

• several variables are available (e.g. user name

(SASL), client, authentication mechanism)

The new ARC - A SASL based client/server application March 2, 2004 16/18

Writing an ARCv2 command (2)

• a command can get client data by reading from STDIN

• and can send data to client by writing to STDOUT

• example whoami.pm

The new ARC - A SASL based client/server application March 2, 2004 17/18

Register a command to a server

• via configuration file when using arcxd or at the new

call as a parameter

• Perl class name can be assigned to one or more

command names

• the called command name is given as a member

variable to the actual command class

The new ARC - A SASL based client/server application March 2, 2004 18/18

arc-client.pl:

#!/usr/bin/perl -w

use Arc::Connection::Client;
use strict;

my $arc = new Arc::Connection::Client(
server => "hyade11",
port => 4242,
timeout => 30,
loglevel=> 7,
logdestination => ’stderr’,
service => ’arc’,
sasl_mechanism =>undef,
sasl_cb_user => $ENV{’USER’},
sasl_cb_auth => $ENV{’USER’},
sasl_cb_pass => \&password,

);

if (my $m = $arc->IsError()) {
die $m;

}

if ($arc->StartSession) {

18-1

$arc->CommandStart("test");
$arc->CommandWrite("hello\n");
if (my $t = $arc->CommandRead()) {

print $t; # should give ’ell’
}
$arc->CommandEnd();

}

sub password
{

return "pw";
}

arc-server.pl:

#!/usr/bin/perl -w
use Arc::Server;
use strict;

$SIG{INT} = \∫
my $arc = new Arc::Server(

listenport => 4243,
loglevel => 7,
logdestination => "stderr",

18-2

maxpidcount => 5,
daemonize => 0,
connection_vars => {

loglevel => 7,
logdestination => ’stderr’,
timeout => 30,
sasl_mechanisms => ["GSSAPI","KERBEROS_V4","PLAIN"],
sasl_cb_getsecret => &getsecret,
sasl_cb_checkpass => &checkpass,
commands => {

’whoami’ => ’Arc::Command::Whoami’,
’uptime’ => ’Arc::Command::Uptime’,

},
service => "service",

}
);

if (my $m = $arc->IsError()) {
die $m;

}

$arc->Start();

sub int
{

18-3

$arc->Interrupt() if defined $arc;
}

sub getsecret
{
return "pw";
}

sub checkpass
{
return 1;
}

18-4

