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SASL overview

• What is SASL? (theory

• How SASL works

• SASL in Perl
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What is SASL?

• SASL stands for ”Simple Authentication and Security

Layer”

• abstracts a wide range of authentication mechanisms

• even supports challenge-response-based

mechanisms like GSSAPI (Kerberos 5) or MD5

algorithms

• provides some generic functions on client- and

server-side
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How does SASL work (1)

• there is an init, a new, a start and a step method

• the wanted mechanism must be given to the

SASL-library at the new-call

• start and step methods are used to handle the

authentication

• SASL gets user specific data via different callback

functions
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How does SASL work (2)
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SASL implementations

• several implementations of SASL libraries exist

– Cyrus SASL (C library, most popular)

– GNU SASL (C library, not very matured)

– Authen::SASL::Perl (Perl, client only, less mech)

– Authen::SASL::Cyrus (Perl, same features like

Cyrus SASL)
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Authen::SASL::Cyrus

• at first, no server functionality was available

• in ARCv2 server side SASL is necessary, so I had to

extend Perl’s Authen::SASL framework (i.e.

Authen::SASL::Cyrus) using XS language

• patches are on their way to CPAN; hopefully with the

end of March it is available to non-desy users
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SASL in Perl for client authentication

• use Authen::SASL; includes the Perl SASL

framework

• client_new method creates an

Authen::SASL::Cyrus object

• example sasl-client.pl
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SASL in Perl for server authentication

• use Authen::SASL; includes the Perl SASL

framework

• server_new method creates an

Authen::SASL::Cyrus object

• example sasl-server.pl
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sasl-client.pl:

use strict;
use Authen::SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",
callback => {
user => \&getusername,
pass => \&getpassword,
}
);

# Creating the Authen::SASL::Cyrus instance
my $conn = $sasl->client_new("service", "hostname.domain.tld");

# Client begins always
sendreply($conn->client_start());

while ($conn->need_step) {
sendreply($conn->client_step( &getreply() ) );
}

if ($conn->code == 0) {
print STDERR "Negotiation succeeded.\n";



} else {
print STDERR "Negotiation failed.\n";
}

sub getusername
{
print "Username: ";
return <>;
}

sub getpassword
{
print "Password: ";
return <>;
}

sasl-server.pl:

use strict;
use Authen::SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",
callback => {
checkpass => \&checkpass,
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canonuser => \&canonuser,
}
);

# Creating the Authen::SASL::Cyrus instance
my $conn = $sasl->server_new("service");

# Clients first string (maybe "", depends on mechanism)
# Client has to start always
sendreply( $conn->server_start( &getreply() ) );

while ($conn->need_step) {
sendreply( $conn->server_step( &getreply() ) );
}

if ($conn->code == 0) {
print "Negotiation succeeded.\n";
} else {
print "Negotiation failed.\n";
}

sub checkpass
{
return 1;
}
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sub canonuser
{
my ($username);
return $username;
}
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ARCv2 overview

• ARC - tasks, history, rewriting

• ARCv2 internals

• How to use it
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ARC principle

• ARC is client/server application

• user command requests are shipped from a client to a

server

• server runs the mostly privileged commands in an

appropriate environment (privileged)

• server decides if the calling user is allowed to run the

command

• one can say, ARC is a secure RPC
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The history of ARC

• Originally written by Rainer Toebbicke in 1995/1996

• primarily to support administrators to manage the AFS

File-space and for acron

• Alf Wachsmann extends ARC to enable Kerberos V

authentication
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Weaknesses of ARC

• only Kerberos 4 authentication is possible

• it is triggered through the super-server ”inetd”

• originally released under a CERN license, was not

freely downloadable

• no comprehensive documentation

• sometimes no (complete) response is returned by the

server

The new ARC - A SASL based client/server application March 2, 2004 4/18



Expected features of ARCv2 (1)

• portability across a wide range of platforms (achieved

by using Perl)

• a very robust server has to be available (serve a high

number of requests, stand-alone server)

• Authentication has to support at least Kerberos 4 and

5 (SASL)

• ARCv2 command writing has to be easy
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Expected features of ARCv2 (2)

• a comprehensive documentation has to be available

• it should be free software, accessible by everybody

(CPAN)
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ARCv2 internals

• two connection types are existing

– protocol connection

– command connection

• run several ARCv2 commands within one protocol

connection; improves speed for more complex

commands

• for each command a new connection will be opened

(like FTP)
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Protocol connection


Client
ARCv2 server


C: ARC/2.0

S: AUTH GSSAPI,PLAIN

C: AUTHENTICATE GSSAPI

S: AUTHTYPE GSSAPI

C: SASL [....]

S: SASL [....]

[....]

C: CMD whoami

S: CMDPASV

141.34.19.211:58965


S: DONE

C: QUIT


encrypted command-connection


pboettch coming from hyade11.ifh.de [141.34.19.211] Port 58966


ARCv2 session
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Command environment

• the server runs the requested command in a separate

child process

• the STDIN and STDOUT of this process are

duplicated to pipes

• the server process reads and writes the data from/to

the command connection to these pipes and vice

versa
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Command data transfer
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Usage of the client - arcx

• command line interface: arcx (ARC eXtended)

• parameters are like the old arc + some extensions

• Examples: (see arcx(3) )

arcx whoami

arcx -h hyade11

cat /etc/passwd | arcx put /etc/passwd

arcx get /etc/passwd > /etc/passwd
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Usage of the server - arcxd

• arcxd is a command line script to start the

stand-alone server

• must be configured by a configuration file

• can fork into the background

• see arcxd(3)
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ARCv2 in Perl - client

• use Arc::Connection::Client;

includes the approp. class to use client functionality in

a Perl script

• my $arc = new Arc:: .. ( ... );

creates a Perl object

• several methods are available to run commands

• example arc-client.pl
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ARCv2 in Perl - server (1)

• use Arc::Server; includes the approp. class

to run the server in a Perl script

• my $arc = new Arc::Server(..);

creates a Perl object

• the parameters given at the new-call are influencing

the server a lot

• before starting the server it is important to configure

the environment (e.g. creating/extracting keys for

Kerberos V)
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ARCv2 in Perl - server (2)

• the method Start starts the server, including:

– listening on the given port

– accepting connections

– forking into background

• the method Interrupt ends the server

• example arc-server.pl
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Writing an ARCv2 command (1)

• self-made ARCv2 commands should be derive from

Arc::Command

• have to be a Perl class (have a new function, bless)

• have to implement a Execute method (entry

function for the server)

• several variables are available (e.g. user name

(SASL), client, authentication mechanism)
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Writing an ARCv2 command (2)

• a command can get client data by reading from STDIN

• and can send data to client by writing to STDOUT

• example whoami.pm
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Register a command to a server

• via configuration file when using arcxd or at the new

call as a parameter

• Perl class name can be assigned to one or more

command names

• the called command name is given as a member

variable to the actual command class
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arc-client.pl:

#!/usr/bin/perl -w

use Arc::Connection::Client;
use strict;

my $arc = new Arc::Connection::Client(
server => "hyade11",
port => 4242,
timeout => 30,
loglevel=> 7,
logdestination => ’stderr’,
service => ’arc’,
sasl_mechanism =>undef,
sasl_cb_user => $ENV{’USER’},
sasl_cb_auth => $ENV{’USER’},
sasl_cb_pass => \&password,

);

if (my $m = $arc->IsError()) {
die $m;

}

if ($arc->StartSession) {
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$arc->CommandStart("test");
$arc->CommandWrite("hello\n");
if (my $t = $arc->CommandRead()) {

print $t; # should give ’ell’
}
$arc->CommandEnd();

}

sub password
{

return "pw";
}

arc-server.pl:

#!/usr/bin/perl -w
use Arc::Server;
use strict;

$SIG{INT} = \&int;
my $arc = new Arc::Server(

listenport => 4243,
loglevel => 7,
logdestination => "stderr",
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maxpidcount => 5,
daemonize => 0,
connection_vars => {

loglevel => 7,
logdestination => ’stderr’,
timeout => 30,
sasl_mechanisms => ["GSSAPI","KERBEROS_V4","PLAIN"],
sasl_cb_getsecret => &getsecret,
sasl_cb_checkpass => &checkpass,
commands => {

’whoami’ => ’Arc::Command::Whoami’,
’uptime’ => ’Arc::Command::Uptime’,

},
service => "service",

}
);

if (my $m = $arc->IsError()) {
die $m;

}

$arc->Start();

sub int
{
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$arc->Interrupt() if defined $arc;
}

sub getsecret
{
return "pw";
}

sub checkpass
{
return 1;
}
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