Authen::SASL - SASL in Perl for client/server
authentications

Patrick Boettcher
Technische Fachhochschule Wildau
patrick.boettcher@desy.de

March 2, 2004

SASL overview
e What is SASL? (theory
e How SASL works

e SASL in Perl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 1/8

What is SASL?

e SASL stands for "Simple Authentication and Security
Layer”

e abstracts a wide range of authentication mechanisms

® cven supports challenge-response-based
mechanisms like GSSAPI (Kerberos 5) or MD5

algorithms

® provides some generic functions on client- and

server-side

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 2/8

How does SASL work (1)

e there is an init, a new, a start and a step method

e the wanted mechanism must be given to the

SASL-library at the new-call

e start and step methods are used to handle the

authentication

e SASL gets user specific data via different callback

functions

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 3/8

How does SASL work (2)

Client

new (AUTH MECH)

Server

new (AUTH MECH)

another step
needed

yes»|

Authentication
succesfull

step 4%

%» step

another step
needed

Authentication
succesfull

Authen::SASL - SASL in Perl for client/server authentications

March 2, 2004

4/8

SASL implementations

e several implementations of SASL libraries exist
— Cyrus SASL (C library, most popular)
— GNU SASL (C library, not very matured)
— Authen::SASL::Perl (Perl, client only, less mech)

— Authen::SASL.:.Cyrus (Perl, same features like
Cyrus SASL)

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 5/8

Authen::SASL:.Cyrus

e at first, no server functionality was available

e in ARCv2 server side SASL is necessary, so | had to
extend Perl's Authen::SASL framework (i.e.

Authen::SASL.::Cyrus) using XS language

e patches are on their way to CPAN; hopefully with the

end of March it is available to non-desy users

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 6/8

SASL in Perl for client authentication

e use Authen: :SASL; includes the Perl SASL
framework

@ client new method creates an
Authen::SASL.::Cyrus object

e example sasl—client.pl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 7/8

SASL in Perl for server authentication

e use Authen: :SASL; includes the Perl SASL

framework

® server new method creates an
Authen::SASL.::Cyrus object

® example sasl—-server.pl

Authen::SASL - SASL in Perl for client/server authentications March 2, 2004 8/8

sasl-client.pl:

use strict;
use Authen: :SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",

callback => {

user => \&getusername,

pass => \&getpassword,

}

) i

Creating the Authen::SASL::Cyrus instance
my Sconn = $sasl->client_new("service", "hostname.domain.tld");

Client begins always
sendreply (Sconn->client_start ());

while (Sconn->need_step) {
sendreply (Sconn->client_step(&getreply ()));
}

if (Sconn—->code == 0) {
print STDERR "Negotiation succeeded.\n";

} else {
print STDERR "Negotiation failed.\n";

}

sub getusername

{

print "Username: ";
return <>;

}

sub getpassword

{

print "Password: ";
return <>;

}

sasl-server.pl:

use strict;
use Authen: :SASL;

my $sasl = Authen::SASL->new (
mechanism => "PLAIN",

callback => {

checkpass => \&checkpass,

canonuser => \&canonuser,
}
) ;

Creating the Authen::SASL::Cyrus instance

my Sconn = $sasl->server_new ("service");

Clients first string (maybe "", depends on mechanism)
Client has to start always

sendreply (S$Sconn->server_start (&getreply ()));

while (Sconn->need_step) {
sendreply ($conn->server_step(&getreply ()));

}

if (Sconn->code == 0) {
print "Negotiation succeeded.\n";
} else {

print "Negotiation failed.\n";

}

sub checkpass

{

return 1;

}

8-3

sub canonuser

{

my (Susername);
return S$username;

}

The new ARC - A SASL based client/server
application

Patrick Boettcher
Technische Fachhochschule Wildau
patrick.boettcher@desy.de

March 2, 2004

ARCv2 overview
e ARC - tasks, history, rewriting
e ARCvV2 internals

e How to use it

The new ARC - A SASL based client/server application March 2, 2004 1/18

ARC principle
e ARC is client/server application

e user command requests are shipped from a client to a

server

® server runs the mostly privileged commands in an
appropriate environment (privileged)

e server decides if the calling user is allowed to run the
command

e one can say, ARC is a secure RPC

The new ARC - A SASL based client/server application March 2, 2004 2/18

The history of ARC
e Originally written by Rainer Toebbicke in 1995/1996

e primarily to support administrators to manage the AFS

File-space and for acron

e Alf Wachsmann extends ARC to enable Kerberos V

authentication

The new ARC - A SASL based client/server application March 2, 2004 3/18

Weaknesses of ARC

e only Kerberos 4 authentication is possible
e it is triggered through the super-server "inetd”

e originally released under a CERN license, was not

freely downloadable
® no comprehensive documentation

e sometimes no (complete) response is returned by the

server

The new ARC - A SASL based client/server application March 2, 2004 4/18

Expected features of ARCv2 (1)

e portability across a wide range of platforms (achieved

by using Perl)

® a very robust server has to be available (serve a high

number of requests, stand-alone server)

e Authentication has to support at least Kerberos 4 and
5 (SASL)

e ARCv2 command writing has to be easy

The new ARC - A SASL based client/server application March 2, 2004 5/18

Expected features of ARCv2 (2)
® a comprehensive documentation has to be available

e it should be free software, accessible by everybody
(CPAN)

The new ARC - A SASL based client/server application March 2, 2004 6/18

ARCv2 internals

e two connection types are existing
— protocol connection
— command connection
e run several ARCv2 commands within one protocol

connection; improves speed for more complex

commands

e for each command a new connection will be opened
(like FTP)

The new ARC - A SASL based client/server application March 2, 2004 7/18

ARCv2 session

Protocol connection

C: ARC/2.0

S: AUTH GSSAPI,PLAIN

C: AUTHENTICATE GSSAPI
S: AUTHTYPE GSSAPI

C:SASL[...]
== | ARCv2 server |S: SASL [....] @ Client

[....]
C: CMD whoami
S: CMDPASV

141.34.19.211:58965

/\

encrypted command-connection————

Lpboettch coming from hyade11.ifh.de [141.34.19.211] Port 58966

S: DONE
C:QUIT

The new ARC - A SASL based client/server application March 2, 2004 8/18

Command environment

e the server runs the requested command in a separate

child process

e the STDIN and STDOUT of this process are
duplicated to pipes

® the server process reads and writes the data from/to
the command connection to these pipes and vice

versa

The new ARC - A SASL based client/server application March 2, 2004 9/18

Command data transfer

in/

CommandWrite-method

-

ARCv2 encrypted ARCv2

. «—— network ——— >

Client . Server

connection
out/ out-pipe/ in-pipe /

CommandRead-method stdin stdout
Term!nal/ Command J
Script

The new ARC - A SASL based client/server application

March 2, 2004

10/18

Usage of the client - arcx
e command line interface: arcx (ARC eXtended)
e parameters are like the old arc + some extensions
e Examples: (see arcx(3))

arcx whoamil
arcx —h hyadell
cat /etc/passwd | arcx put /etc/passwd

arcx get /etc/passwd > /etc/passwd

The new ARC - A SASL based client/server application March 2, 2004 11/18

Usage of the server - arcxd

e arcxdis acommand line script to start the

stand-alone server
e must be configured by a configuration file
e can fork into the background

® see arcxd(3)

The new ARC - A SASL based client/server application March 2, 2004 12/18

ARCv2 in Perl - client

® use Arc::Connection::Client;
iIncludes the approp. class to use client functionality in

a Perl script

emy Sarc = new Arc:: .. (...);

creates a Perl object
® several methods are available to run commands

e example arc—client.pl

The new ARC - A SASL based client/server application March 2, 2004 13/18

ARCV2 in Perl - server (1)

@ use Arc::Server; includes the approp. class
to run the server in a Perl script

e my Sarc = new Arc::Server(..);

creates a Perl object

e the parameters given at the new-call are influencing
the server a lot

® before starting the server it is important to configure
the environment (e.g. creating/extracting keys for
Kerberos V)

The new ARC - A SASL based client/server application March 2, 2004 14/18

ARCv2 in Perl - server (2)

e the method St art starts the server, including:
— listening on the given port
— accepting connections

— forking into background
e the method Interrupt ends the server

® example arc—server.pl

The new ARC - A SASL based client/server application March 2, 2004 15/18

Writing an ARCv2 command (1)

e self-made ARCv2 commands should be derive from

Arc::Command
e have to be a Perl class (have a new function, bless)

e have to implement a Execute method (entry

function for the server)

® several variables are available (e.g. user name

(SASL), client, authentication mechanism)

The new ARC - A SASL based client/server application March 2, 2004 16/18

Writing an ARCv2 command (2)

e a command can get client data by reading from STDIN
e and can send data to client by writing to STDOUT

® example whoamai .pm

The new ARC - A SASL based client/server application March 2, 2004 17/18

Register a command to a server

e via configuration file when using arcxd or at the new

call as a parameter

e Perl class name can be assigned to one or more

command names

e the called command name is given as a member

variable to the actual command class

The new ARC - A SASL based client/server application March 2, 2004 18/18

arc-client.pl:

#!/usr/bin/perl -w

use Arc::Connection::Client;
use strict;

my $arc = new Arc::Connection::Client (
server => "hyadell",
port => 4242,
timeout => 30,
loglevel=> 7,
logdestination => ’stderr’,
service => "arc’,
sasl_mechanism =>undef,
sasl _cb_user => SENV{’USER’},
sasl_cb_auth => SENV{’USER’},
sasl_cb_pass => \&password,

if (my Sm = Sarc->IsError()) {
die $m;

if (Sarc—>StartSession) {

18-1

Sarc—->CommandStart ("test") ;
Sarc—>CommandWrite ("hello\n");
if (my $t = Sarc->CommandRead())

print S$t; # should give ’'ell’
}

Sarc—->CommandEnd () ;

sub password

{

return "pw";

arc-server.pl:

#!/usr/bin/perl -w
use Arc::Server;
use strict;

SSIG{INT} = \∫

my $arc = new Arc::Server (
listenport => 4243,
loglevel => 7,
logdestination => "stderr",

{

18-2

maxpidcount => 5,
daemonize => 0,
connection_vars => {
loglevel => 7,
logdestination => ’stderr’,
timeout => 30,
sasl _mechanisms => ["GSSAPI", "KERBEROS V4", "PLAIN"],
sasl_cb_getsecret => &getsecret,
sasl_cb_checkpass => &checkpass,
commands => {
"whoami’ => ’'Arc::Command: :Whoami’,
"uptime’ => ’'Arc::Command: :Uptime’,
}I

service => "service",
) ;
if (my $m = Sarc->IsError()) {

die S$Sm;

Sarc—->Start () ;

sub int

{

18-3

Sarc->Interrupt () 1f defined S$Sarc;

sub getsecret

{

return "pw";

}

sub checkpass

{

return 1;

}

18-4

