64-bit Linux on AMD64/EM64T

Stephan Wiesand
DESY -DV -

November 23rd, 2004
Outline

• introduction to AMD64 & EM64T
 • more than just an extended address space
• performance comparisons for physics applications
 • ROOT, Sieglinde, Pythia, FORM
 • on Opteron, Nocona, Prescott & 32-bit systems
• managing and using Linux on these systems
 • 64bit distributions
 • 32bit compatibility
 • problems
• status & strategy for DESY computing
Terminology

• AMD started with x86-64
 • (to sound vendor neutral ?)
 • then renamed to AMD64
 • (around this time, intel claimed nobody wants or needs this)
• intel started out with IA32E
 • back then, IPF was still called IA64
 • then renamed it to EM64T
 • Extended Memory 64 Technology
• rpm architecture suffix is x86_64 or ia32e
• I'll use AMD64 as the generic term
 • credit where credit's due
Another 64bit Platform?

- Linux has been running on 64bit platforms for a while
 - Alpha, Sparc, PPC, PA-RISC, IPF (formerly known as IA64)
 - All are RISC, and none can execute i386 instructions
 - Software emulation exists for Alpha and IPF
 - Slow
- AMD64 is an extension of the i386 CISC architecture
 - Executes i386 instructions in hardware
 - Can run a 32bit OS
 - Supports running 32bit applications under 64bit OS
 - 64bit mode needed an extended instruction set
 - Allowed for additional registers and addressing modes
Why 64bit, anyway?

- 64bit ≠ twice the performance of 32bit
 - often rather slower than faster
 - obvious exception: 64bit integer arithmetics
 - but often 32bit does fine
 - higher memory consumption (pointers, longs, long doubles)
 - AMD64 is fast for other reasons

- but it breaks the 4GB limit we're approaching rapidly
 - max virtual address space for 32bit
 - actual limit is 3 GB (3.5 at best) per process
 - even if RedHat claim their kernel can do 4GB/4GB split
 - i386 allows up to 64 GB memory for OS (via PAE)
 - eats cycles, clumsy (remember "DOS extended memory"?)
 - mappings need (low) memory themselves
64 bits?

- not quite: AMD64 supports
 - 40 bits (1TB) of physical memory
 - 48 bits (256 TB) of virtual memory
- current chipsets may support less
 - 915X/925X: 4GB of physical memory...
- ABI imposed limits for executables in 64bit mode:
 - “small” code model: 2 GB code + data
 - “medium model”: 2 GB code (w/ performance penalty)
- 32bit apps under 64bit OS have full 4GB address space
 - 3GB is the limit under 32bit kernels (3.5 at best)
AMD64 register set

- General purpose registers and instruction pointer are 64 bits wide, twice the number of GPRs.
- All addressable as 8, 16, 32, or 64 bits as needed.
- Twice the number of SSE (formerly MMX) registers.
- Still 128 bits wide.
AMD64 Operating Modes

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>OS Required</th>
<th>Application Recompile Required</th>
<th>Defaults</th>
<th>Register Extensions</th>
<th>Typical GPR Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Address Size (bits)</td>
<td>Operand Size (bits)</td>
<td></td>
</tr>
<tr>
<td>Long Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64-bit Mode</td>
<td>No</td>
<td>yes</td>
<td>64</td>
<td>32</td>
<td>yes</td>
</tr>
<tr>
<td>Compatibility Mode</td>
<td>New 64-bit OS</td>
<td>no</td>
<td>32</td>
<td>no</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Legacy Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected Mode</td>
<td>Legacy 32-bit OS</td>
<td>no</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Virtual-8086 Mode</td>
<td>Legacy 16-bit OS</td>
<td>no</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Real Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CPU enters **Long Mode** or **Legacy Mode** during boot, no way back.
- Rumour: extended register set could be accessed in 32-bit mode as well (**"REX32"**)?
 - Would still need modified OS and compilers.
AMD64 Instruction Set Changes

- besides 64bit specifics:
 - effective protection of memory against execution
 - "NX" bit
 - available in 32bit mode as well
 - generally usable instruction pointer relative addressing
 - reduced performance penalty for position independent code
 - -> sharedlibs
 - from 20% to 8%
 - 64bit apps must not use x87 instructions
 - x87 stack not preserved across context switches
AMD64/EM64T Differences

- most visible: **SSE instructions**
 - both implement SSE2
 - only AMD64 implements 3dNow!
 - only EM64T implements SSE3

- a few more subtle differences in instruction sets
 - should only matter for kernel, glibc, compilers
 - should not affect ordinary application programmes
 - everything we compiled with pre-EM64T gcc releases worked on EM64T systems
Where's the Bottleneck?
AMD’s Additional Step

- currently all 6.4 GB/s:
 - memory interfaces
 - front side bus (FSB 800; FSB 1066 is in the pipeline)
 - HyperTransport links
4-way systems

- we may finally see 4-way systems that make (more) sense
 - and become affordable because there's a sizable market
NUMA: Non Uniform Memory Access

- memory now may be more or less close to CPU
 - cache coherent access to remote memory at full bandwidth
 - but bandwidth has to be shared and latencies increase
 - requires kernel with NUMA support to be most efficient
 - memory should be allocated close to requesting process/thread
 - processes/threads should be scheduled close to their memory
- alternatively, BIOS may also present all RAM to the OS as single uniform block, node memory interleaved by page
 - no OS support required
- whenever using shared memory, allocate it from the process or thread that uses it most
Opteron vs. Xeon w/ EM64T

<table>
<thead>
<tr>
<th></th>
<th>Opteron</th>
<th>Xeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>130 nm (90: 2H/04)</td>
<td>90 nm</td>
</tr>
<tr>
<td>L1 Cache</td>
<td>64KB+ 64KB</td>
<td>12KB + 8KB</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>1MB</td>
<td>1MB</td>
</tr>
<tr>
<td>Memory Controller</td>
<td>on chip</td>
<td>northbridge</td>
</tr>
<tr>
<td>FSB Speed</td>
<td>chip clock</td>
<td>800 MHz</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>6.4 GB/s/CPU</td>
<td>6.4 GB/s</td>
</tr>
<tr>
<td>Hyperthreading</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>SSE2</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>SSE3</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

- **1-way**: Opteron 1xx, Pentium 4
- **2-way**: Opteron 2xx, Xeon
- **4/8-way**: Opteron 8xx, Xeon MP

- **xx**: 46 = 2 GHz, 48 = 2.2 GHz, 50 = 2.4 GHz, ...
Other Differences in Architectures

- DMA to memory above 4 GB
 - Opterons have an I/O MMU to make this possible
 - Intel's chips do not
 => have to use bounce buffers
Hardware for Performance Comparisons

- All equipped with 2 CPUs and SCSI disk:
 - **Opteron 2.0 GHz**: IBM eServer 325, 4 GB
 - SuSE 9.0 professional, kernel 2.4.21-215-smp
 - **Opteron 2.2 GHz**: Sun Fire V20z, 4GB
 - SuSE 9.0 professional, kernel 2.4.21-231-smp
 - **Xeon 3.4 GHz**: Supermicro 7044H-X8R, 4GB
 - SuSE 9.1 professional, kernel 2.6.4-52-smp
 - **Xeon 3.2 GHz**: Sun Fire V65x, 2 GB
 - SuSE 8.2 professional, kernel 2.4.26
 - **Tualatin 1.266 GHz**: Supermicro 6013H, 1GB
 - SuSE 8.2 professional, kernel 2.4.25
Latest Addition

- EM64T hitting the desktop:
 - single P4 3.2 GHz
 - Dell Precision 370
 - 512 MB
 - SATA disk (80 GB WD)
 - SL 3.0.3, kernel 2.4.20-21.EL
 - 925X chipset
ROOT Performance

ROOT 4.00/08 stress (gcc 3.3.3)

better (all charts)

- 64bit single
- 64bit dual
- 32bit single
- 32bit dual

ROOTMarks

0 250 500 750 1000 1250 1500

Opteron 2.2 GHz
Xeon 3.4 GHz
P4 3.2 GHz
Xeon 3.2 GHz
Amanda experiment's neutrino reconstruction / filtering software

single process, but uses a MySQL server on same host

software made available by Peter Nießen, Univ. of Delaware
Pythia 6.2 example 4
“study of W mass shift by colour rearrangement at LEP 2”
Pythia 6.2 (Commercial Compilers)

Pythia Performance

- Opteron 2.2 Ghz 64bit pgf77 -fast
- Xeon 3.2 GHz 32bit ifort-8.0 -O3 -axN
- Opteron 2.2 GHz 64bit (fastest g77 result)
- P4 3.2 GHz 32bit ifort-8.0 -O3 -axN
- P4 3.2 GHz 64bit pgf77-fast

Graph showing performance metrics.
FORM 3.1

FORM performance (diagram with 10th momentum)

- symbolic formula manipulation, C, huge data sets
- implements own “paging” of data to disk
- 64bit executable built by author J. Vermaseren on DESY test system
- 32bit executable built with icc (www.nikhef.nl/~form)
Dual/Single CPU performance in Clusters

- measurements by C. Urbach, FU Berlin
- 32bit Lattice QCD, MPI
- performed on clusters with Gigabit Ethernet and Infiniband interconnects (FZK)
 - not our test systems
- \(p = \) number of processes
Performance Comparisons: Summary

- AMD64/EM64T systems are fast, even in 32bit mode
 - they're significantly faster in 64bit mode
 - missing: repeat 32bit runs under 32bit OS on same hardware
- Opteron systems make very efficient use of a 2nd CPU
 - and of additional MHz
- one gets more out of both with commercial compilers
- 64bit comes at a cost:
 - increased footprints in memory & on disk
 - typically 25%
 - additional platform to support
64bit Linux on AMD64/EM64T systems

- good news: system looks, feels and behaves like “a linux PC”
 - BIOS (press F2 during boot...)
 - boot loader (grub, lilo)
 - OS installation (Red Hat, SL, SuSE)
- problems:
 - porting physics applications to 64bit
 - providing 32bit compatibility environments
 - residual bugs (features?) in 64bit ports of system software
Porting Issues

- potential problems:
 - assumption that `sizeof(int) = sizeof(long) = sizeof(void*)`
 - inline assembly must not use x87 instructions
 - x87 registers were 80bit wide
 - intermediate results kept in registers with this precision
 - was a problem when we moved from RISC to Linux/x86
 - intermediate results of FP arithemetics in SSE registers are 64bit again (standard IEEE precision)
 - can't mix 32/64-bit in same application
 - all libraries needed must be available as 64-bit
 - cernlib isn't
Data Type Sizes

<table>
<thead>
<tr>
<th>type</th>
<th>x86</th>
<th>x86–64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>short</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>long</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>long long</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>float</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>double</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>long double</td>
<td>96</td>
<td>128</td>
</tr>
<tr>
<td>void*</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

- no alignment constraints (like on i386)
- but "natural" alignment is much faster
About CERNLIB

- CERN discontinued support end of 2003
 - announced well before
 - no hope for a change of policy
- it will not be ported to any new platform
 - no known sustainable effort on 64bit port
- if you're using it in your current software
 - you have a problem
 - cut off from performance gains due to platform enhancements
- if you're using it in software for future projects
 - get rid of it now, or you lock yourself into the past
Now Shipping for AMD64/EM64T

- Oracle DB
- compilers, libraries:
 - Intel
 - PGI
 - NAG
 - Pathscale
- SUNs Java SDK 1.5 (5 ?)
- MySQL DB
- Mathematica 5, Matlab
- ...
32bit Compatibility: Runtime

- 64bit linux allows running 32bit applications transparently
 - provided all shared libs are available
 - 64bit libraries go into .../lib64
 - 32bit libraries go into .../lib as before
 - mandated by Linux Standards Base
 - not all ISVs comply
 - Oracle uses $ORACLE_HOME/lib and $ORACLE_HOME/lib32
- some applications must be persuaded by using the "linux32" prefix command (see setarch(1)):
 - `uname -m` returns x86_64
 - `linux32 uname -m` returns i686
 - `linux32 math` (only app found to need this yet)
32bit Compatibility: Development

- 64bit Linux also allows building 32bit software
- gcc >= 3.2 creates 64bit objects by default on x86-64
 - `m32` switch makes it create 32bit objects
 - and link against 32bit libraries
 - gcc3 on 32bit accepts the `-m32` switch as well (noop there)
- reality is more complex
 - a decent Makefile uses commands like `root-config --libs`
- 32bit development best done in pure 32bit environment
 - may be chroot (or CHOS) environment on a 64bit system
32bit Compatibility: Distributions

- Red Hat and SuSE (at least) provide 32bit packages

- the SuSE way:
 - RPM “xyz-32bit” with 32bit specific content
 - installed alongside the “xyz” 64bit package, no clashes

- the Red Hat way:
 - first install xyz.i386.rpm, then xyz.x86_64.rpm
 - limited support by RPM/YUM, not yet by APT (SPMA/rpmt ?)
 - rpm -ql glibc.i686
 - yum install openssl.i686; yum remove openssl.i686
 - careful:
 - this will remove any files shared with openssl.x86_64
 - order matters
Other Problems Encountered

- **Kerberos 5/AFS problem (SL incl. 3.0.3)**
 - login yields K4/K5 Tickets, but no AFS token
 - aklog segfaults, afslog fails (used in pam_krb5afs.so)
 - krb5 code defines KRB4_32 to be 64 bits on any 64bit platform except alpha
 - SRPM has a Patch37 fixing these issues
 - disabled after discussion on krb5 development list
 - => workaround: rebuild krb5 with Patch37 enabled
 - afslog (and the pam module) now work
 - aklog still segfaults

```c
#define KRB4_32 long
#else
#define KRB4_32 int
#endif
```
Strategy for DESY Computing

- 64-bit is the way to go for physics computing
 - the 4 GB limit is lurking
 - top 20% of performance potential of current hardware is accessible to 64bit applications only
 - x86 CPUs are approaching the ceiling
 - performance gains due to multicore or different platforms only
- probably no more 32-bit-only farm nodes
 - we prefer Opterons over Xeons for the time being
- SL3 will be available in 32-bit or 64-bit from the start
 - next generation desktops most likely 64-bit capable
 - 64-bit support for desktops & interactive work may lag a bit
Status in Zeuthen

- 1 single P4 system
 - SL3/64 bit development
- 14 dual Opteron systems
 - 9 x HPC Infiniband cluster, being set up (SL3/RHEL3)
 - 2 x restricted use (special theory installation) (still SuSE 9.0)
 - 1 x test for cluster, to become farm node (SL 3.0.3)
 - 1 x farm node (still SuSE 9.0/amd64)
 - access with \(-l\) sys=amd64
 - 1 x public interactive login (still SuSE 9.0/amd64)
 - lx64.ifh.de
- 10 more dual Opteron farm nodes being tendered
Summary

- AMD64 is becoming mainstream
 - ecosystem is in place
 - distributions are usable
 - hardware is affordable
 - fast even for legacy codes
- x86 is close to (or past) its “best before” date
- Itanium price/performance better than Xeon in 2007
 - according to intel
 - for native 64-bit programmes only
- time to get ready
Sources/Reading

[1] Porting to AMD64 Frequently asked questions

[2] The AMD64 ISA value proposition

[3] Intel E7520/E7320 Product Brief

[4] Opteron 2P Server Comparison Reference

[5] Opteron 4P Server Comparison Reference

[6] Jan Hubička: Porting GCC to the AMD64 architecture
 www.ucw.cz/~hubicka/papers/amd64.pdf