Messung wichtiger Strahlparameter des LHCs mit Diamantsensoren

Wolfgang Lange, DESY Zeuthen und CMS-BRIL-Gruppe am CERN

Technisches Seminar am 5. Mai 2015 im DESY Zeuthen

Der Fahrplan:

Einführung

Beschleuniger, Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC

Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen

Einführung

Einführung

Beschleuniger, Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen

Beschleuniger

Fixtarget- und Collider-Maschinen

Teilchenquellen (e⁻, p, lonen - z.B. Pb)

Vorbeschleuniger

Transferleitungen

Beschleuniger für die Endenergie

Experiment, ggf. Strahlvernichtung (Beam Dump)

Beschleuniger – der LHC schematisch

Collider-Maschine

Teilchenquellen (e⁻, p, lonen - z.B. Pb) → Vorbeschleuniger → Transferleitungen → Beschleuniger für die Endenergie → Experiment, ggf. Strahlvernichtung (Beam Dump)

Beschleuniger – der LHC aus der Vogelperspektive

Collider-Maschine

Teilchenquellen (e⁻, p, Ionen - z.B. Pb) → Vorbeschleuniger → Transferleitungen → Beschleuniger für die Endenergie → Experiment, ggf. Strahlvernichtung (Beam Dump)

Strahlmonitore

Warum Strahlmonitore?

- Strahldurchmesser ~ 300 μm, Hebelarm viele Meter;
- 350 MJ pro Strahl in 2808 Teilchenpaketen (~89 μs Umlauf → 11.2 kHz).
- 350 MJ \rightarrow E = $mv^2/2 \rightarrow ICE3$ mit **10 Wagen à 17.5 t** \rightarrow **v = 227 km/h**
- Bereits minimale Strahlverluste können Maschine und Experimenten schaden.

Was tun Strahlmonitore?

- messen den Teilchenfluss nahe am Strahlrohr (r ≥ 5cm ... einige Meter);
- Rückmeldung zur Maschine → Strahloptimierung → niedriger Untergrund
- stellen Strahlverluste fest;
- veranlassen direkt, wenn nötig, Sofortmaßnahmen (beam abort).

Strahlmonitore

CMS

hat unterschiedliche Strahlmonitore (BRM-System):

- **integrierende Strahlmonitore** (signal current monitors) → BCM1L, BCM2;
- "bunch by bunch monitors" → Szintillatoren und BCM1F;
 (zukünftig noch Cherenkov-Detektoren).

Fahrplan...

Einführung

Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen

Der Strahlmonitor BCM1F (bis Anfang 2013)

8 Einkristall-CVD-Diamanten (5 * 5 * 0.5 mm³, Element 6), angeordnet um die Strahlachse, Radius 4.5 cm, 1.8 m vom Wechselwirkungspunkt

- Diamant → keine Kühlung, robust, strahlungsfest
- Sensormodul: Diamantsensor, Vorverstärker, Laser für Monomode-Faser

"paketgenaue Messungen" von Untergrundraten und Kollisionsproduktraten

- Überwachung des Strahls sichert niedrige Belastung der Spurdetektoren
- Messen der Wechselwirkungsraten → Luminositätsmessung

Auslesen unabhängig vom CMS-Auslesesystem, unabhängige Stromversorgung

BCM1F-Elektronik (bis Anfang 2013)

Was sieht man nun mit einem solchen Gerät?

Messungen mit BCM1F – erste Daten

- betrieben unmittelbar ab Start des LHC → erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität

Trigger (BPTX, auslaufend)

Sensorebene +Z

Sensorebene -Z

Messungen mit BCM1F – Strahlstruktur des LHC

- betrieben unmittelbar ab Start des LHC → erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität

Struktur der Teilchenpakete für einen LHC-Umlauf, "abort gap" rechts

Messungen mit BCM1F - Strahlzyklus

- betrieben unmittelbar ab Start des LHC → erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität

"Lebenszyklus" einer Füllung des LHCs

Messungen mit BCM1F – neue Effekte entdeckt

- betrieben unmittelbar ab Start des LHC → erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität

Albedo-Effekt nach Kollisionen:

- Teilchen treffen auf Material inCMS
- Anregung der Kerne
 → radioaktive Zerfälle
- langsame Teilchen
- Lebensdauer ~2 μs

Messungen mit BCM1F – Luminosität

- Was ist die Luminosität $\,L\,$?

$$L = \frac{n \cdot N_1 \cdot N_2 \cdot f}{A}$$

N – Zahl der Teilchen pro Teilchenpaket (bunch) für den jeweiligen Strahl

n – Zahl der Teilchenpakete im Umlauf

f – Umlauffrequenz

A – Querschnittsfläche des Strahls (der Teilchenpakete)

Die Luminosität hat dieselbe Einheit wie die Teilchenstromdichte: cm⁻²s⁻¹.

Erst durch die Kenntnis der Luminosität können Messungen durch den Vergleich mit sehr gut bekannten physikalischen Prozessen kalibriert werden. Außerdem ist sie ein Maß für die "Produktivität" der Maschine...

Messungen mit BCM1F - Luminositätsmessung

- betrieben unmittelbar ab Start des LHC → erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität

Kollisionsraten (LUT) werden benutzt:

- erfordert Kalibrierung
- Online-Luminosität in CMS gemessen durch Hadron Forward Calorimeter (HF)

Test von BCM1F als Online-Luminometer:

- gute Übereinstimmung
- geprüft mit Berechnungen von HF sowie Messungen des Pixeldetektors
- → hat Potential als Online-Luminometer
- Vorteil: unabhängig von CMS DAQ

Grenzen der Messungen mit BCM1F

- 25 ns "**shaping time**" des Vorverstärkers 50 ns → 25 ns "bunch spacing"
- Vorverstärker leicht zu **übersteuern** (→ Totzeit bei VV u. Diskriminatoren)
- Laserdioden (analoge Signalübertragung) wurden beschädigt (Strahlung).
- **Diamantsensoren** zeigen Strahlenschäden → Polarisation → Was tun?
- **Granularität**: nur 4 Sensoren auf jeder Seite vom *IP* → Sättigung / "*pile-up problems*"

Fahrplan...

Einführung

Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC

Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen

Neubau und Erweiterung von BCM1F 2013/2014 – (1)

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage → polarization → how to cure?
- only 4 sensors on each side of the interaction point → saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance
 - metallization of sensors split into two pads
- use of 12 sensors with two pads each → 24 channels per side

Neubau und Erweiterung von BCM1F 2013/2014 – (2)

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage → polarization → how to cure?
- only 4 sensors on each side of the interaction point → saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance
 - metallization of sensors split into two pads
- use of 12 sensors with two pads each → 24 channels per side

Neubau und Erweiterung von BCM1F 2013/2014 – (3)

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage → polarization → how to cure?
- only 4 sensors on each side of the interaction point → saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance,
- HV design to be improved

- metallization of sensors split into two pads
- use of 12 sensors with two pads each → 24 channels per side

Neubau und Erweiterung von BCM1F 2013/2014 – (4)

- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage → polarization → how to cure?
- only 4 sensors on each side of the interaction point → saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance
 - metallization of sensors split into two pads
- use of 12 sensors with two pads each → 24 channels per side

Neubau und Erweiterung von BCM1F 2013/2014 – (5)

Forderungen aus der LHC-Erweiterung für BCM1F:

Flüsse: Luminosity 10³⁴ cm⁻²s⁻¹

→ BCM1F erwartet einen Fluss geladener Teilchen von ~ 3x10⁷ cm⁻²s⁻¹

25 ns Paketabstand

→ hohe Signalraten (> MHz)

Zusammenfassung ("Pflichtenheft"):

- 12 Sensoren auf jeder Seite des IP mit je zwei Pads,
 - → Skalierung des Gesamtsystems, 8 → 48 Kanäle
- "Handhaben" der Strahlenschäden (im Entwurf und beim Betrieb)
- Schnellere Elektronik (Vorverstärker)
- Neue Datenregistrierung ("DAQ"), analog und digital parallel

Von den Plänen zur Wirklichkeit – der Vorverstärker

- ASIC-Entwurf durch AGH Krakow (PL), Designer: Dominik Przyborowski
- IBM CMOS-8RF-130nm technology (radiation hard, submitted via CERN)
- ~ 50 mV/fC Ladungsverstärkung
- < 10³ e⁻ äquivalente Rauschladung am Eingang (reale Eingangskapazität (Sensor und Umgebung))
- durchdachte Kalibrierlogik mit zwei Empfindlichkeiten (Linearitäts-Test)
- 4 Kanäle pro ASIC (2 für 2 Sensor-Pads, 2 zukünftige Reserve)

ASIC: Labormessungen der gesamten Auslesekette des aktuellen BCM1F-Detektors

Von den Plänen zur Wirklichkeit – Optische Übertragung

Strahlenschäden zeigen sich im Amplitudenverlust:

• 25% Signalverlust nach 30 fb⁻¹

Gegenmaßnahmen:

- weg von "heißen" Gebieten
- Kompensieren der Verluste durch:
 - Laserschwelle
 - Lasersteilheit
- → "Slow control" erforderlich!

Von Plänen zur Wirklichkeit – Träger und Verdrahtung

Die "C-shape" trägt Sensoren und Elektronik

Sämtliche Verdrahtung und alle Bauteile auf einer **Starr-Flex-Leiterplatte** mit mehreren Faltungen, um Länge zu "entfalten".

Starr-Flex-Leiterplatte – Aufbau und Schwierigkeiten

Bestücken der passiven Bauteile von Hand schrittweise,

dann jeweils Tests

Probleme:

Vias, Bauteilgröße, Stabilität beim Löten

Von Plänen zur Wirklichkeit – Auswerteelektronik

Signalverarbeitung

Zwei parallele Wege, die verfolgt werden:

Diskriminatoren

Fixed-threshold vs. constant-fraction

Constant-fraction: better time resolution

Fixed-threshold: lower deadtime

Preliminary conclusion: deadtime outweighs resolution → use FTD (CAEN V895) for primary path but install CFD to run and test in parallel

Digitizer with fast peak-finding algorithms

Identify pulse arrival time and peak height, distinguish signals close in time (overlapping) "deconvolution"

Development of algorithms ongoing

Current hardware choice: uTCA ADC FMC mezzanine system. Multiple FMC candidates, currently tested

Recording Histogram Unit (RHU)

RHU: Readout of full-orbit histograms

- No deadtime (buffered readout)
- 8 histogramming input channels
- Bins of 6.25 ns = 4/bunch bucket (14k bins/orbit)
- Bunch clock, orbit clock, beam abort
- Configurable sampling period
- Ethernet readout
- Developed at DESY-Zeuthen (H. Leich, M. Penno)
- Prototype installed Sept. 2012,
 validated during 2012-2013 run
- Very flexible unit (FPGA based, own interface and OS)
- Physics friendly data compression for direct access

Fahrplan...

Einführung

Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC

Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen

Erster Strahl am Ostersonntag 2015

Wie sich die Bilder gleichen... (Messung: Olena Karacheban)

Schlussfolgerungen und Ausblick

Neuer, leistungsfähigerer Detektor BCM1F gebaut und installiert:

- *Träger*: 48 Kanäle (24 Sensoren mit je 2 Pads), eine Leiterplatte
- Diamantsensoren: höhere Betriebsspannung möglich (1 kV)
- neuer Auslese-ASIC: schneller und übersteuerungsfester
- Optische Signalübertragung: Laser jetzt in weniger "heißer" Region
- Back end: "digitizer & peak-finding" parallel zum Diskriminatorpfad
- RHU zur direkten Bestimmung von Raten, keine Totzeit
- Algorithmen für direkte Luminositätsmessung (online)
- erfolgreiche Installation von 4 Trägern rechts, links, außen, innen)
- im Experiment CMS am LHC im Januar 2015
 - → volle Funktionstüchtigkeit
- erste Messung von Strahlparametern, gegenwärtig Auswertung

Ausblick für die kommenden Monate:

Optimierung des Systems laufend, Schritthalten mit dem LHC

Was wäre noch zu sagen?

Dank allen Mitarbeitern, die zu diesem Erfolg beigetragen haben:

in der Elektronikwerkstatt

Christin Kippel, Wolfgang Philipp, Jürgen Pieper,

in der Elektronikgruppe

Hans Henschel,

den Studenten und Wissenschaftlern vom DESY, der BTU, dem CERN

Elena Castro, Maria Hempel, Martin Stegler, Olena Karacheban,
Olga Novgorodova, Ingo Bloch, Wolfgang Lohmann,
den Mitgliedern der BRIL-Kollaboration (CERN),

und vielen hier nicht genannten Helfern und Unterstützern!

Und nun noch:

Danke für Ihre Aufmerksamkeit! Thank you for your attention! Спасибо за внимание!

Backup Slides

- 1. Details zum weiterentwickelten Preamp
- 2. Technologieprobleme der Starr-Flex-Leiterplatte
- 3. zu Diskriminatoren

Backup Slides (1) – upgraded frontend ASIC

Schematic diagram of BCM1FE channel

- IBM CMOS8RF 130nm technology
- 2.5 V power supply (high voltage enabled design)
- Power consumption \sim 11 mW/ch (10mW of output buffer)

Backup Slides (2) – Probleme bei der Technologie

Die Trägerleiterplatte (starr-flex) bietet außerordentliche Herausforderungen:

- sehr feiner Aufbau (Bondpads für Nacktchips, Feinleitertechnik, Bauteile 04-02);
- Durchkontaktierungen extrem anspruchsvoll (Dmr. 0.2 mm bei 2.4 mm Stärke);
- Hochspannungsfestigkeit (1 kV) bei sehr begrenztem Raum) für 6 Kanäle;
- sehr komplexe mechanische Trägerfunktion, Mono-Mode-Fasern, optische Steckverbinder;
- Größe und Komplexität erforderten spezielle Werkzeuge beim Reflow-Löten und Bonden;

Backup Slides (3) – Discriminators

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" ΔT ~12 ns

Meanwhile tested: two constant-fraction discriminators: *CAEN V812, PSI CFD950*Both CFDs significantly improve on FTD time walk

- V812: better time resolution for trigger of single pulse
- CFD950: better resolution between consecutive pulses

