# Messung wichtiger Strahlparameter des LHCs mit Diamantsensoren

Wolfgang Lange, DESY Zeuthen und CMS-BRIL-Gruppe am CERN

Technisches Seminar am 5. Mai 2015 im DESY Zeuthen











### Einführung

Beschleuniger, Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen





### Einführung

Beschleuniger, Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen



# **Beschleuniger**



### Fixtarget- und Collider-Maschinen

Teilchenquellen (e<sup>-</sup>, p, Ionen - z.B. Pb)

Vorbeschleuniger

Transferleitungen

Beschleuniger für die Endenergie

Experiment, ggf. Strahlvernichtung (Beam Dump)





# **Beschleuniger – der LHC schematisch**

### **Collider-Maschine**

Teilchenquellen (e<sup>-</sup>, p, Ionen - z.B. Pb)  $\rightarrow$  Vorbeschleuniger  $\rightarrow$  Transferleitungen  $\rightarrow$  Beschleuniger für die Endenergie

→ Experiment, ggf. Strahlvernichtung (Beam Dump)





# **Beschleuniger – der LHC aus der Vogelperspektive**

### **Collider-Maschine**

Teilchenquellen (e<sup>-</sup>, p, Ionen - z.B. Pb)  $\rightarrow$  Vorbeschleuniger  $\rightarrow$  Transferleitungen  $\rightarrow$  Beschleuniger für die Endenergie

→ Experiment, ggf. Strahlvernichtung (Beam Dump)





Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 6



### Warum Strahlmonitore?

- Strahldurchmesser ~ 300  $\mu$ m, Hebelarm viele Meter;
- 350 MJ pro Strahl in 2808 Teilchenpaketen (~89  $\mu$ s Umlauf  $\rightarrow$  11.2 kHz).
- 350 MJ  $\rightarrow$  E =  $mv^2/2 \rightarrow$  ICE3 mit **10 Wagen à 17.5 t**  $\rightarrow$  v = 227 km/h
- Bereits minimale Strahlverluste können Maschine und Experimenten schaden.

### Was tun Strahlmonitore?

- messen den Teilchenfluss nahe am Strahlrohr ( $r \ge 5$  cm ... einige Meter);
- Rückmeldung zur Maschine  $\rightarrow$  Strahloptimierung  $\rightarrow$  niedriger Untergrund
- stellen Strahlverluste fest;
- veranlassen direkt, wenn nötig, Sofortmaßnahmen (beam abort).



# **Strahlmonitore**



### CMS

hat unterschiedliche Strahlmonitore (BRM-System):

- **integrierende Strahlmonitore** (signal current monitors)  $\rightarrow$  BCM1L, BCM2;
- "bunch by bunch monitors" → Szintillatoren und BCM1F; (zukünftig noch Cherenkov-Detektoren).





Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 8

# Fahrplan...



### Einführung

Strahlmonitore, das Experiment CMS

### BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen



# **Der Strahlmonitor BCM1F (bis Anfang 2013)**



8 Einkristall-CVD-Diamanten (5 \* 5 \* 0.5 mm<sup>3</sup>, Element 6), angeordnet um die Strahlachse, Radius 4.5 cm, 1.8 m vom Wechselwirkungspunkt

- Diamant → keine Kühlung, robust, strahlungsfest
- Sensormodul: Diamantsensor, Vorverstärker, Laser für Monomode-Faser

"paketgenaue Messungen" von Untergrundraten und Kollisionsproduktraten

- Überwachung des Strahls sichert niedrige Belastung der Spurdetektoren
- Messen der Wechselwirkungsraten → Luminositätsmessung

Auslesen unabhängig vom CMS-Auslesesystem, unabhängige Stromversorgung



# **BCM1F-Elektronik (bis Anfang 2013)**





### Output:

### *analog spectra* ADC → monitoring

# *hit rates* Discriminator →

Look-up table "LUT"

Recording Histogram Unit "RHU"



# Was sieht man nun mit einem solchen Gerät?





### Messungen mit BCM1F – erste Daten



#### - betrieben unmittelbar ab Start des LHC $\rightarrow$ erste Strahlen im LHC bereits gemessen

- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität







- betrieben unmittelbar ab Start des LHC  $\rightarrow$  erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität



Struktur der Teilchenpakete für einen LHC-Umlauf, "abort gap" rechts



# Messungen mit BCM1F - Strahlzyklus

- betrieben unmittelbar ab Start des LHC  $\rightarrow$  erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität







- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität







- Was ist die Luminosität L ?

$$L = \frac{n \cdot N_1 \cdot N_2 \cdot f}{A}$$

- N Zahl der Teilchen pro Teilchenpaket (bunch) für den jeweiligen Strahl
- n Zahl der Teilchenpakete im Umlauf
- f Umlauffrequenz
- A Querschnittsfläche des Strahls (der Teilchenpakete)

Die Luminosität hat dieselbe Einheit wie die Teilchenstromdichte:  $cm^{-2}s^{-1}$ .

Erst durch die Kenntnis der Luminosität können Messungen durch den Vergleich mit sehr gut bekannten physikalischen Prozessen kalibriert werden. Außerdem ist sie ein Maß für die "Produktivität" der Maschine...





- betrieben unmittelbar ab Start des LHC  $\rightarrow$  erste Strahlen im LHC bereits gemessen
- misst Untergrundraten und Zeitstrukturen der beiden gegenläufigen Strahlen
- Entdeckung des "Albedo-Effektes" (Nach"leuchten" durch langsame Teilchen)
- liefert relevante Untergrundraten für CMS und den LHC-Kontrollraum
- misst die Online-Luminosität



Kollisionsraten (LUT) werden benutzt:

- erfordert Kalibrierung
- Online-Luminosität in CMS gemessen durch Hadron Forward Calorimeter (HF)

Test von BCM1F als Online-Luminometer:

- gute Übereinstimmung
- gepr
  üft mit Berechnungen von HF sowie Messungen des Pixeldetektors
- → hat Potential als Online-Luminometer
- Vorteil: unabhängig von CMS DAQ



# Grenzen der Messungen mit BCM1F



- 25 ns "*shaping time*" des Vorverstärkers 50 ns → 25 ns "*bunch spacing*"
- Vorverstärker leicht zu **übersteuern** (→ Totzeit bei VV u. Diskriminatoren)
- Laserdioden (analoge Signalübertragung) wurden beschädigt (Strahlung).
- **Diamantsensoren** zeigen Strahlenschäden  $\rightarrow$  Polarisation  $\rightarrow$  Was tun?
- Granularität: nur 4 Sensoren auf jeder Seite vom IP → Sättigung / "pile-up problems"



# Fahrplan...



### Einführung

Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

# Erweiterung für die aktuelle Betriebsperiode des LHC

Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen





- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage  $\rightarrow$  polarization  $\rightarrow$  how to cure?
- only 4 sensors on each side of the interaction point  $\rightarrow$  saturation / pile-up problems

### Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

No better laser diodes available:

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance

• metallization of sensors split into two pads





- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage  $\rightarrow$  polarization  $\rightarrow$  how to cure?
- only 4 sensors on each side of the interaction point  $\rightarrow$  saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

No better laser diodes available:

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance

metallization of sensors split into two pads





- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage  $\rightarrow$  polarization  $\rightarrow$  how to cure?
- only 4 sensors on each side of the interaction point  $\rightarrow$  saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

No better laser diodes available:

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance,
- HV design to be improved

• metallization of sensors split into two pads



# Neubau und Erweiterung von BCM1F 2013/2014 – (4)



- preamp has 25 ns shaping time to slow for 25 ns bunch spacing
- preamp needs a long recovery time from large input signals (overdriven, saturated)
- laser diodes (analog signal transmission) have radiation damage
- diamond sensors show radiation damage  $\rightarrow$  polarization  $\rightarrow$  how to cure?
- only 4 sensors on each side of the interaction point  $\rightarrow$  saturation / pile-up problems

Design of a new preamp:

- rise time below 12 ns
- fast recovery from overdrive
- differential outputs

No better laser diodes available:

- Moving of laser diodes to a less exposed area
- Adding slow control for current and gain (compensation)
- use of components with extended high voltage tolerance

• metallization of sensors split into two pads



# Neubau und Erweiterung von BCM1F 2013/2014 – (5)







# Von den Plänen zur Wirklichkeit – der Vorverstärker

- ASIC-Entwurf durch AGH Krakow (PL), Designer: Dominik Przyborowski
- IBM CMOS-8RF-130nm technology (radiation hard, submitted via CERN)
- ~ 50 mV/fC Ladungsverstärkung
- < 10<sup>3</sup> e<sup>-</sup> äquivalente Rauschladung am Eingang (reale Eingangskapazität (Sensor und Umgebung))
- durchdachte Kalibrierlogik mit zwei Empfindlichkeiten (Linearitäts-Test)
- 4 Kanäle pro ASIC (2 für 2 Sensor-Pads, 2 zukünftige Reserve)



ASIC: Labormessungen der gesamten Auslesekette des aktuellen BCM1F-Detektors

Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 26



# Von den Plänen zur Wirklichkeit – Optische Übertragung

Strahlenschäden zeigen sich im Amplitudenverlust:

• 25% Signalverlust nach 30 fb<sup>-1</sup>



### Gegenmaßnahmen:

- weg von "heißen" Gebieten
- Kompensieren der Verluste durch:
  - Laserschwelle
  - Lasersteilheit
- → "Slow control" erforderlich!





Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 27







Bestücken der passiven Bauteile von Hand schrittweise, dann jeweils Tests

#### Probleme:

Vias, Bauteilgröße, Stabilität beim Löten







# Von Plänen zur Wirklichkeit – Auswerteelektronik





# Signalverarbeitung



### Zwei parallele Wege, die verfolgt werden:

### **Diskriminatoren**

Fixed-threshold vs. constant-fraction



Constant-fraction: better time resolution

Fixed-threshold: lower deadtime

Preliminary conclusion: deadtime outweighs resolution → use FTD (CAEN V895) for primary path but install CFD to run and test in parallel Digitizer with fast peak-finding algorithms



Identify pulse arrival time and peak height, distinguish signals close in time (overlapping) "deconvolution"

Development of algorithms ongoing

Current hardware choice: uTCA ADC FMC mezzanine system. Multiple FMC candidates, currently tested



# **Recording Histogram Unit (RHU)**





### RHU: Readout of full-orbit histograms

- No deadtime (buffered readout)
- 8 histogramming input channels
- Bins of 6.25 ns = 4/bunch bucket (14k bins/orbit)
- Bunch clock, orbit clock, beam abort
- Configurable sampling period
- Ethernet readout
- Developed at DESY-Zeuthen (H. Leich, M. Penno)
- Prototype installed Sept. 2012,

validated during 2012-2013 run

- Very flexible unit (FPGA based, own interface and OS)
- Physics friendly data compression for direct access





# Fahrplan...



### Einführung

Strahlmonitore, das Experiment CMS

BCM1F in der ersten Betriebsperiode des LHC

Systemaufbau, Ergebnisse, Grenzen

Erweiterung für die aktuelle Betriebsperiode des LHC Beschreibung, Entwurf, vorläufige Ergebnisse

Ergebnisse und Schlussfolgerungen



# **Erster Strahl am Ostersonntag 2015**



### Wie sich die Bilder gleichen... (Messung: Olena Karacheban)





Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 34



Neuer, leistungsfähigerer Detektor BCM1F gebaut und installiert:

- **Träger:** 48 Kanäle (24 Sensoren mit je 2 Pads), eine Leiterplatte
- **Diamantsensoren:** höhere Betriebsspannung möglich (1 kV)
- neuer Auslese-ASIC: schneller und übersteuerungsfester
- **Optische Signalübertragung**: Laser jetzt in weniger "heißer" Region
- **Back end**: "digitizer & peak-finding" parallel zum Diskriminatorpfad
- **RHU** zur direkten Bestimmung von Raten, keine Totzeit
- Algorithmen *für direkte Luminositätsmessung* (online)
- erfolgreiche Installation von 4 Trägern rechts, links, außen, innen)
  - im Experiment CMS am LHC im Januar 2015
    - → volle Funktionstüchtigkeit
- erste Messung von Strahlparametern, gegenwärtig Auswertung

Ausblick für die kommenden Monate:

• Optimierung des Systems laufend, Schritthalten mit dem LHC





# Dank allen Mitarbeitern, die zu diesem Erfolg beigetragen haben:

in der Elektronikwerkstatt

Christin Kippel, Wolfgang Philipp, Jürgen Pieper,

in der Elektronikgruppe

### Hans Henschel,

den Studenten und Wissenschaftlern vom DESY, der BTU, dem CERN

# Elena Castro, Maria Hempel, Martin Stegler, Olena Karacheban, Olga Novgorodova, Ingo Bloch, Wolfgang Lohmann, den Mitgliedern der BRIL-Kollaboration (CERN),

und vielen hier nicht genannten Helfern und Unterstützern!





# Danke für Ihre Aufmerksamkeit! Thank you for your attention! Спасибо за внимание!



Wolfgang Lange | Strahlmonitore mit Diamantsensoren | Technisches Seminar im DESY Zeuthen | 05-Mai-2015 | Page 37



- **1.** Details zum weiterentwickelten Preamp
- 2. Technologieprobleme der Starr-Flex-Leiterplatte
- 3. zu Diskriminatoren





# Schematic diagram of BCM1FE channel



- IBM CMOS8RF 130nm technology
- 2.5 V power supply (high voltage enabled design)
- Power consumption  $\sim$  11 mW/ch (10mW of output buffer)





Die Trägerleiterplatte (starr-flex) bietet außerordentliche Herausforderungen:

- sehr feiner Aufbau (Bondpads für Nacktchips, Feinleitertechnik, Bauteile 04-02);
- Durchkontaktierungen extrem anspruchsvoll (Dmr. 0.2 mm bei 2.4 mm Stärke);
- Hochspannungsfestigkeit (1 kV) bei sehr begrenztem Raum ) für 6 Kanäle;
- sehr komplexe mechanische Trägerfunktion, Mono-Mode-Fasern, optische Steckverbinder;
- Größe und Komplexität erforderten spezielle Werkzeuge beim Reflow-Löten und Bonden;



# **Backup Slides (3) – Discriminators**



Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk"  $\Delta T \sim 12$  ns



Meanwhile tested: two constant-fraction discriminators: CAEN V812, PSI CFD950

Both CFDs significantly improve on FTD time walk

- V812: better time resolution for trigger of single pulse
- CFD950: better resolution between consecutive pulses

