

Überblick:	
 Motivation Warum FEL SASE FEL. Warum Photo-Injektor 	
 Prinzip des Photo-Injektors 	
 Simulationen des Photo-Injektors HF-Komponenten Statische Magnetfelder Strahldynamik Strahldynamik+ Simulationen++ 	2

SASE
Das SASE Prinzip stellt extreme Anforderungen an den Elektronenstrahl
 Strahlqualität; d.h. Elektronendichte Spitzenstrom (~kA) Extrem kurze Bunche (~100 fs) Strahlquerschnitt und –divergenz (Emittanz ~1 mm mrad) Energiebreite (ΔE / E ~ 10⁻⁴)
•Stabilität
–Energie bzw. Laserwellenlänge ($\frac{\Delta\lambda}{2} = -2\frac{\Delta E}{E}$)
-Strahllage (FEL-Prozess, Laserstrahltransport)
Beim LINAC werden die Grundlagen für die Strahlqualität am Anfang gelegt. Danach kann man alles nur noch schlechter machen!
extreme Anforderungen an den Photo-Injektor
0

Raumladung	-				
$\overrightarrow{R} \overrightarrow{p} \overrightarrow{p} \overrightarrow{F}$	$= \frac{q}{\gamma} \cdot \frac{\vec{p} \cdot (\vec{p} \cdot \vec{R}) + \vec{R}}{(\vec{p} \cdot \vec{R})^2 + R^2}$				
$\vec{F} = \frac{eQ}{\gamma^2} \cdot G\left(\gamma \frac{2\sigma_z}{\sigma_x + \sigma_y}\right) \cdot \frac{\vec{r} - \langle \vec{r} \rangle}{V_G}$					
Raumladung Routinen:	+				
•Particle-In-Cell	"Voll-Physik"	Tsim↑, Mem↑, Randbedingungen, numerische Instabilität			
•LT-Poisson-LT-1	schnell, flexible	ΔE . in ruhe System \neq 0			
•Direkt (Punkt-zu-Punkt)	"Voll-Physik"	Tsim↑↑			
•Modelle (analytische, halb-analytische)	sehr schnell	Idealisierung			

Strahldynamik Simulationen				
Externe FelderRaumladungEmission	Raumladung Routinen:	Programmen		
	•Particle-In-Cell	•Particle Studio, MAFIA, PARMELA		
	•LT-Poisson-LT-1	•ASTRA, GPT		
	•Direkt (Punkt-zu-Punkt)	GPT*		
	•Modelle (analytische, halb- analytische)	HOMDYN		
Optim Ziel: Tran	ierung des XFEL Photo-I sversal Emittanz <1 mm r	njectors. nrad @ 1nC		
			28	

Danke für Ihre Aufmerksamkeit!