

		Evoluti	ion of	ba	sic	paramo	212	ers	$\Pi \Pi$		
/	Exp. Year	Collision rate	Channel count		L1A rate	Event building	Proc P	essing. ower	Soci	ology	
/	UA's 1980	3 µsec	-	-		- 5-10 1) MIPS 150		-200	
	LEP 1989	10-20 µsec	250 - 500K	-		10 Mbit/sec	100 MIPS		300-500		
	BaBar 1999	4 ns	150K	2 KHz		400 Mbit/s	1000 MIPS		S 400		
	Tevatron	396 ns	~ 800 K	1() - 50 KHz	4-10 Gbit/sec	5.10	⁴ MIPS	50	00	
//	LHC 2007	25 ns	200 M*	10	0 KHz	20-500 Gbit/s	>10	⁶ MIPS	25	00	
	ILC 2020 ?	330 ns	900 M*	3	KHz	10 Gbit/s	~10	⁶ MIPS ?	> 30	00 ?	
		*	including pixel	s	Sı	ub-Detector		LH			LC
						Pixel		150	M	80	00 M
			===== <mark>====</mark> ======	====	N	licrostrips		~ 10) M	~3	0 M
					Fine	grain tracke	ers	~ 40	0 K	1,	5 M
					Ca	alorimeters		200	K	3	M
			Trigger	& DA(Muon		~1	Μ		-

PC (Commercial): few months to implement! No hrdware !

Trigger & DAQ Issues - DESY Zeuthen

9

Summary of present thinking

The ILC environment poses new challenges & opportunities which will need new technical advances in Data Collection → NOT LEP/SLD, NOT LHC !

The FEE integrates everything

ightarrow From signal processing & digitizer to the RO BUFFER ...

- Very large number of channels to manage (Trakers & ECal)
- Interface and feedback between detector & machine is fundamental
- ightarrowoptimize the luminosity ightarrow consequence on the DAQ architecture
- Classical boundaries are moving : Slow control, On/Off line
- Burst mode allows a fully software trigger!
 - → Flexible, scalable and cost effective...

Dooks like the Ultimate Trigger: Take EVERYTHING & sort later !
OREAT! A sociological simplification!
Trigger & DAQ Issues - DESY Zeuthen
15

Trigger & DAQ Issues - DESY Zeuthen

20

	Strategy for event sele	ction @ LHC	
40 MHz	"Local" identification of high Pt object	s eq use coarse dedicated da	ata
L1	 Electrons /Photons , Hadrons & Jets Muons 	→ Energy clusters →Track segments	
	- Neutrinos	\rightarrow Missing Et	
100 KHz	Particle signature (e/g,h,Jet, μ) \rightarrow (se final digitized data	
	- Refine Pt cuts \rightarrow fine granularity	& track reconstruction	
	- Combine detectors \rightarrow Converted elect	rron ,"Punchthrough", decays	
	Global topology → multiplicity & th	nresholds	
1 KHz	Identification & classification of physics p	rocess → trigger menu	
·	- Partial event reconstruction \rightarrow Vertice.	s , Masses ,Missing Et	
L3 _	Physics analysis		
100 Hz	 "Off-line" type analysis of classified even Trigger & DAQ Issues - DESY Zeuthen 	24	

The LHC example

		//			$T \square \square \Pi I$	
	Table 1: 1/0 Bus Bandwidt	h Comna	rison			
	I/O Bus	MHz	Bus Width	Rate	Transmission	Measured
~	10 543	1411 12	Bits	Mbytes/sec	Transmission	@ Yale
PC Buses	Industry Standard Architecture (ISA)	83	16	8.3		
	Extended Industry Standard Architecture (EISA)	8.3	32	33		
-	Peripheral Component Interconnect (PCI)	33	32	132		
	AGP4X			1 000		
	AGP8X			2,000		
				-,		
Networks	Ethernet	10	1	1.25	CAT 5 Cable	
	USB 2.0	480 mb	1	55		40
Networks	Gigabit Ethernet	1250	1	125	CAT 5 Cable	65%
	PCI Express	2500	x1	250	Dual Simplex	
			x4	1,000	Dual Simplex	
	PCI Express Gen2	5000	x1	500	Dual Simplex	
			x4	2,000	Dual Simplex	
Networks	Infiniband	2500	x4	1,000	Dual Simplex	75%
Instrument	ation					
	CAMAC	1	24	3		3
	FASTCAMAC Level 1	2.5	24	7.5		7.5
	FASTCAMAC Level 2	10	24/48	30/60		40
	VME	10	16-64	20-80 ??		
	Compact PCI	33	32	132		

Trigger & DAQ Issues - DESY Zeuthen

Current Working program (1) \rightarrow LCWS06

Understanding in details Detectors Read Out schemes

- Establish a stable network of contacts at the Detector level
- By Subdetectors technologies
 Independently of detector concepts
- By Detector concepts SiD,LDC,GLD \rightarrow what are the particularities?
 - Propose a uniform architecture (VTX,TRK, CALORs,Muon ...)
 Do not forget the Very Forward !
- Influence of technical aspects → Power cycling & beam RF pick-up

- Special triggers (Calibration, Tests, Cosmics ...)
- Possible Scenarios for Bunch Of Interest fast selection
 - Needs for hardware PREprocessing ?

Interface with machine

- Common aspects : can the machine & Detector DAQ should be similar?
- Which infos and are needed?
- Integration of Bunch Train feedback

Trigger & DAQ Issues - DESY Zeuthen

29

Curent working program (2)

- Integration of GDN \rightarrow Integrated computing model (watch GRID!)
- 'Slow controls', monitoring, calibrations
- Partitionning

■ Milestones for 2006 (CDR) → Baseline ILC support document

- Define a list of technical issues and challenges to be addressed
- Investigate commercial « new » tools & standards (FPGAs, ACTA, PCIexpress ,wireless? ...)

Toward a realistic costing model

- Global to the 3 detectors concepts
- Table of parameters: estimate number of channels, bandwidth
- Estimate quantity of hardware (interfaces, processors, links ...), software ? and manpower (is LHC a good model ? -- » 20 M Euros)

Current working program (3) → LCWS06 Build a wordwide 'long term' strong & stable team Seniors with experience coming from LEP/SLD,Hera/LHC/Tevatron,Babar/Belle/KEK experiments Younger physicists and engineers with enthousiasm! Establish list of contact persons for each detector/concept/machine..... Include long term sociology → NOT reinventing the whee!! Build ONLY what is needed ! Not competing with industry! Do not follow the LHC exemples ! Define a realistic 'PILOT PROJECT' for 2006 - 2008 Practicing state of the art technologies Common to all the concepts and detectors R&D Learning and educating process..... worldwide Investigate the NEXT standard → After CAMAC, Fastbus, VME → PCI express + ATCA

Trigger & DAQ Issues - DESY Zeuthen

31

ITER. AGATA

ATCA in one page

(Advanced Telecommunications Computing Architecture) Courtesy of R.Larsen (SLAC), R.Downing (FNAL), S.Dahwan (Yale), B.Martin (CERN)

Coming from Telecom industry

- System throughput to 2 Tb/s
- System Availability 99.999% (~5 min/yr)
- Sponsored by the <u>PIC Industrial Computer Manufacturers Group (PICMG)</u>

Basics elements and features

- Crate & subrack (Shelf) : Backplane, Shelf Manager, Air Cooling, Power, Entry Modules
 - "Shelf Manager" manages all module, crate, system utilities
- Module /Board (Blade) 14 to 16 units 8U .!,2 inch x 280 mm 200W, vertical/horizontal
- Backplane : redundant dual star and full mesh (point to point)
 - Multiprotocols : Ethernet, Fiber channel, PCI express, Infiniband, rapidIO
 - Synchronization and Clock Interfaces buses (6)
- Rear Transition Module for user up 20 W
- Carrier (Daughter Card, Plug-in Module, Advanced Mezzanine Card)
- Software (Linux based)

	ATCA	PCI Long	VME (6U)	7.25U
Board Area cm²	995	316	373	230mm
Power Watts	200	10/25	30	To Backplane
Bandwidth I/O Gb/s	20 Full Duplex	4.3 66 Mhz 64 bits	2.4 VME 2eSST	Connectivity
Front Panel H*W cm	30 * 23	8 * 1.2	21.5 * 23	Power Transition
Component beight mm	21.33	14.48	13.72	 Passive Back Plane A Volt Power in Specifications for PCIe, Infiniband, GigE using

Trigger & DAQ Issues - DESY Zeuthen

Conclusions

- A lot of exciting things to investigate
 - From physics
 - Algorithms and selection strategy
 - To state of the art NEW technologies
 - Plus an interesting sociological environment

