
1

GPU Computing

Axel Koehler
Sr. Solution Architect HPC

2

GPUs: GeForce, Quadro, Tesla

ARM SoCs: Tegra

NVIDIA: Parallel Computing Company

VGX

R8 Ray Tracing.wmv

3

Continued Demand for Ever Faster Supercomputers

Comprehensive Earth

System Model at

1KM scale, enabling

modeling of cloud

convection and ocean

eddies.

Coupled simulation of

entire cells at

molecular, genetic,

chemical and

biological levels.

First-principles

simulation of

combustion for new

high-efficiency, low-

emision engines.

Predictive calculations

for thermonuclear and

core-collapse

supernovae, allowing

confirmation of

theoretical models.

4

Power Crisis in Supercomputing

1982 1996 2008 2020

Exaflop

Petaflop

Teraflop

Gigaflop

8,200,000 Watts

25,000,000 Watts

850,000 Watts

60,000 Watts

Titan

ORNL

12,600,000 Watts

K-

Computer

5

Multi-core CPUs

Industry has gone multi-core as a first response to power
issues

Performance through parallelism, not frequency

Less than 2% of chip power today goes to flops.

But CPUs are fundamentally designed for single

thread performance rather than energy efficiency

Fast clock rates with deep pipelines

Data and instruction caches optimized for latency

Superscalar issue with out-of-order execution

Lots of predictions and speculative execution

Lots of instruction overhead per operation

6

CPUs: designed to

run a few tasks

quickly.

GPUs: designed

to run many tasks

efficiently.

Accelerated Computing

Add GPUs: Accelerate Applications

7

Fixed function hardware

Transistors are primarily devoted to data processing

Less leaky cache

SIMT thread execution

Groups of threads formed into warps which always executing same
instruction

Cooperative sharing of units with SIMT

eg. fetch instruction on behalf of several threads or read memory location
and broadcast to several registers

Lack of speculation reduces overhead

Minimal Overhead

Hardware managed parallel thread execution and handling of divergence

Energy efficient GPU
Performance = Throughput

8

Structural Mechanics

Comp Fluid Dynamics (CFD)
Electromagnetics

Signal Processing
Image Processing

Video Analytics

Defense / Govt

Manufacturing

Reverse Time Migration
Kirchoff Time Migration

Weather / Climate Modeling

Molecular Dynamics
Computational Physics

Supercomputing

Oil and Gas

Biochemistry

Bioinformatics
Material Science

Life Sciences

Tesla

K10

Kepler GK104

Tesla

K20/K20X

Kepler GK110

9

Product Name K10 K20 K20X

GPU Architecture Kepler: GK104 GK110 GK110

of GPUs 2 1 1

Peak Single Flops
Peak SGEMM

4.58 TF (2.3 TF per GPU)
2.98 TF

3.52 TF
 2.61 TF

3.95 TF
2.90 TF

Peak Double Flops
Peak DGEMM

0.19 TF (0.095 TF per GPU)
0.12 TF

1.17 TF
1.10 TF

1.32 TF
 1.22 TF

Memory size 8 GB (4GB per GPU) 5 GB 6 GB

Memory BW (ECC off) 320 GB/s (160GB/s per GPU) 208 GB/s 250 GB/s

New CUDA Features GPUDirect w/ RDMA
GPUDirect (RDMA), Hyper-Q,

Dynamic Parallelism

ECC Features External DRAMs only DRAM, Caches & Reg Files

CUDA Cores 3072 (1536 per GPU) 2496 2688

Total Board Power 225W 225W 235W

Board Type PCI-e Passive
PCI-e Passive,
Active, SXM

PCI-e Passive
SXM

10

Kepler GK110 Block Diagram

7.1B Transistors

15 SMX units

1.3 TFLOP FP64

1.5 MB L2 Cache

384-bit GDDR5

PCI Express Gen3
compliant

11

Kepler GK110 SMX vs Fermi SM

Ground up redesign for perf/W

6x the SP FP units

4x the DP FP units

Slower FU clocks

3x sustained perf/W

~4x the overall instruction throughput

2x register file size (64K regs)

2x threadblocks (16) & 1.33x threads (2K)

12

Hyper-Q

FERMI
1 Work Queue

KEPLER
32 Concurrent Work Queues

0x

5x

10x

15x

20x

0 5 10 15 20

S
p

e
e

d
u

p
 v

s
.

D
u

a
l
C

P
U

Number of GPUs

CP2K- Quantum Chemistry

K20 with Hyper-Q K20 without Hyper-Q

2.5x

Strong Scaling: 864 water molecules

16 MPI ranks

per node

1 MPI rank

per node

13

Proxy – A Multi-Process Runtime for MPI

Why
Speedups for MPI programs with low-
GPU utilization

How
multiple CPU processes on a single GPU
simultaneously

client-server architecture

client processes share the same CUDA
context

When
Currently on Cray; Production on Linux
with CUDA 5.5

GPU

Proxy Server

CUDA

MPI

Rank 0

CUDA

MPI

Rank 1

CUDA

MPI

Rank 2

CUDA

MPI

Rank 3

What is Dynamic Parallelism?

The ability to launch new kernels from the GPU

Dynamically - based on run-time data

Simultaneously - from multiple threads at once

Independently - each thread can launch a different grid

CPU GPU CPU GPU

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself

15

CPU Fermi GPU CPU Kepler GPU

Dynamic Parallelism
Simpler Code, More General, Higher Performance

Dynamic Parallelism

GPU-Side

Kernel

Launch
Efficiency

Library Calls from Kernels

Simplify CPU/GPU Divide

Batching to Help Fill GPU

Dynamic Load Balancing

Recursive Parallel Algorithms

Data-Dependent Execution

GPU

Familiar Syntax and Programming Model

__global__ void B(float *data)
{
 do_stuff(data);

 X <<< ... >>> (data);
 Y <<< ... >>> (data);
 Z <<< ... >>> (data);
 cudaDeviceSynchronize();

 do_more_stuff(data);
}

A

B

C

X

Y

Z

CPU int main() {
 float *data;
 setup(data);

 A <<< ... >>> (data);
 B <<< ... >>> (data);
 C <<< ... >>> (data);

 cudaDeviceSynchronize();
 return 0;
}

main

Simpler Code: LU Example

LU decomposition (Fermi)

dgetrf(N, N) {

 for j=1 to N

 for i=1 to 64

 idamax<<<>>>

 memcpy

 dswap<<<>>>

 memcpy

 dscal<<<>>>

 dger<<<>>>

 next i

 memcpy

 dlaswap<<<>>>

 dtrsm<<<>>>

 dgemm<<<>>>

 next j

}

idamax();

dswap();

dscal();

dger();

dlaswap();

dtrsm();

dgemm();

GPU Code CPU Code

LU decomposition (Kepler)

dgetrf(N, N) {

 dgetrf<<<>>>

 synchronize();

}

dgetrf(N, N) {

 for j=1 to N

 for i=1 to 64

 idamax<<<>>>

 dswap<<<>>>

 dscal<<<>>>

 dger<<<>>>

 next i

 dlaswap<<<>>>

 dtrsm<<<>>>

 dgemm<<<>>>

 next j

}

GPU Code CPU Code

C
P

U
 i
s
 F

re
e

Source files compiled separately to create independent object files

ab.lib

a.cu b.cu

a.obj b.obj + -OR-

+

main1.cpp

program1.exe

foo.cu

+

Linker creates GPU Callable Libraries and links with CUDA code

GPU Callable Libraries
Direct Access to BLAS and other Libraries from GPU Code

ab.lib

program2.exe

+

main2.cpp

bar.cu

+

cuBLAS

Network

Server 1

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

Server 2

GPU1 GPU2 CPU

GDDR5
Memory

GDDR5
Memory

Network
Card

System
Memory

PCI-e

NVIDIA® GPUDirect™ Support for RDMA
Direct Communication Between GPUs and PCIe devices

21

GPU-aware MPI

Support GPU to GPU communication through standard MPI interfaces without
exposing low level details to the programmer (make MPI implementations aware of
GPU pointers)

e.g. enable MPI_Send, MPI_Recv from/to GPU memory

Made possible by Unified Virtual Addressing (UVA) in CUDA 4.0

MVAPICH2, OpenMPI, Platform MPI

Code without MPI integration
At Sender:

 cudaMemcpy(s_buf, s_device, size, cudaMemcpyDeviceToHost);

 MPI_Send(s_buf, size, MPI_CHAR, 1, 1, MPI_COMM_WORLD);

At Receiver:

 MPI_Recv(r_buf, size, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req);

 cudaMemcpy(r_device, r_buf, size, cudaMemcpyHostToDevice);

Code with MPI integration

At Sender:

 MPI_Send(s_device, size, …);

At Receiver:

 MPI_Recv(r_device, size, …);

22

CUDA Compiler Contributed to Open Source LLVM

Developers want to build

front-ends for

Java, Python, R, DSLs

Target other processors like

ARM, FPGA, GPUs, x86

CUDA
C, C++, Fortran

LLVM Compiler
For CUDA

NVIDIA
GPUs

x86
CPUs

New Language
Support

New Processor
Support

23

Minimum Change, Big Speed-up

Application Code

+

GPU CPU
Compute-Intensive Functions

Rest of Sequential
CPU Code

24

Ways to Accelerate Applications

Libraries Directives
(OpenACC)

Programming

Languages
(CUDA, ..)

Applications

Easiest Approach Maximum

Performance

High Level

Languages

(Matlab, ..)

No Need for

Programming Expertise

CUDA Libraries are

interoperable with OpenACC

CUDA Language is

interoperable with OpenACC

25

MATLAB Parallel Computing
On-ramp to GPU Computing

Most popular math functions on GPUs

MATLAB Compiler support (GPU acceleration without
MATLAB installed)
GPU features in Communications Systems Toolbox

• Random number

generation

• FFT

• Matrix

multiplications

• Solvers

• Convolutions

• Min/max

• SVD

• Cholesky and LU

factorization

26

GPU Accelerated Libraries
“Drop-in” Acceleration for Your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra

Building-block
Algorithms for CUDA IMSL Library

http://code.google.com/p/thrust/downloads/list

27

OpenACC Directives

Program myscience

 ... serial code ...

!$acc region

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end region

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Easy, Open, Powerful

• Simple Compiler hints

• Works on multicore CPUs & many core

GPUs

• Compiler Parallelizes code

• Future Integration into OpenMP

standard planned

OpenACC

Compiler

Hint

http://www.openacc.org

http://www.openacc-standard.org/

28

OpenACC Directives Example
!$acc data copy(A,Anew)

 iter=0

 do while (err > tol .and. iter < iter_max)

 iter = iter +1

 err=0._fp_kind

!$acc kernels

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind *(A(i+1,j) + A(i-1,j) &

 +A(i ,j-1) + A(i ,j+1))

 err = max(err, Anew(i,j)-A(i,j))

 end do

 end do

!$acc end kernels

 IF(mod(iter,100)==0 .or. iter == 1) print *, iter, err

 A= Anew

 end do

!$acc end data

Copy arrays into GPU memory

within data region

Parallelize code inside region

Close off parallel region

Close off data region,

copy data back

29

Wide Adoption of Tesla GPUs

Finance Government Edu/Research Oil and gas Life Sciences Manufacturing

Reverse Time
Migration

Kirchoff Time
Migration

Reservoir Sim

Astrophysics
Lattice QCD
Molecular
Dynamics

Weather / Climate
Modeling

Signal Processing
Satellite Imaging
Video Analytics

Synthetic Aperture
Radar

Bio-chemistry
Bio-informatics

Material Science
Sequence Analysis

Genomics

Risk Analytics
Monte Carlo

Options Pricing
Insurance
modeling

Structural
Mechanics

Computational
Fluid Dynamics
Machine Vision

Electromagnetics

http://www.nvidia.com/page/home.html

30

http://www.nvidia.com/teslaapps/

Over 200 GPU-Accelerated Applications

http://www.nvidia.com/teslaapps/

31

Titan: World’s Fastest Supercomputer

18,688 Tesla K20X Accelerators

27 Petaflops Peak: 90% of Performance from GPUs

17.59 Petaflops Sustained Performance on Linpack

32

Tesla CUDA Architecture Roadmap

16

2

4

6

8

10

12

14

D
P
 G

F
L
O

P
S
 p

e
r

W
a
tt

2008 2010 2012 2014

T10
Fermi

Kepler

Maxwell

33

Integration (memory, processor types, network)

Further concentration on locality (both HW and SW)

Reducing overheads (intra- and inter-GPU)

Continued convergence with consumer technology

How Will GPUs Evolve Over This Decade?

34

Echelon
NVIDIA’s Extreme-Scale Computing Project

DARPA UHPC Program

Targeting 2018

Fast Forward Program

35

Which Takes More Energy?

Performing a 64-bit floating-point FMA:

893,500.288914668

 43.90230564772498

= 39,226,722.78026233027699



+ 2.02789331400154

= 39,226,724.80815564

Or moving the three 64-bit operands 20

mm across the die:

This one takes over 4.7x the energy today (40nm)!

Loading the data from off chip takes >> 100x the energy.

It’s getting worse: in10nm, relative cost will be 17x!

36

Power is the main HPC constraint
Vast majority of work must be done by cores designed for efficiency

NVIDIA GPU’s are already designed for energy efficiency

Data movement dominates the power

Locality at all levels and reduction of overhead is necessary

GPU computing has a sustainable model
Aligned with technology trends, supported by consumer markets

GPUs are the path to the tightly-coupled hybrid processor
future

Summary

37

Thank you.

Questions?

Axel Koehler
Sr. Solution Architect HPC

akoehler@nvidia.com

