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GPUs: GeForce, Quadro, Tesla
 

ARM SoCs: Tegra
 

NVIDIA: Parallel Computing Company 

VGX
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Continued Demand for Ever Faster Supercomputers 
 

Comprehensive Earth 

System Model at 

1KM scale, enabling 

modeling of cloud 

convection and ocean 

eddies. 

Coupled simulation of 

entire cells at 

molecular, genetic, 

chemical and 

biological levels. 

First-principles 

simulation of 

combustion for new 

high-efficiency, low-

emision engines. 

Predictive calculations 

for thermonuclear and 

core-collapse 

supernovae, allowing 

confirmation of 

theoretical models. 
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Power Crisis in Supercomputing 

1982 1996 2008 2020 

Exaflop 

Petaflop 

Teraflop 

Gigaflop 

8,200,000 Watts 

25,000,000 Watts 

850,000 Watts 

60,000 Watts 

Titan 

ORNL 

12,600,000 Watts 

K- 

Computer 
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Multi-core CPUs 

Industry has gone multi-core as a first response to power 
issues 

Performance through parallelism, not frequency 

Less than 2% of chip power today goes to flops. 

But CPUs are fundamentally designed for single 

thread performance rather than energy efficiency 

Fast clock rates with deep pipelines 

Data and instruction caches optimized for latency 

Superscalar issue with out-of-order execution 

Lots of predictions and speculative execution 

Lots of instruction overhead per operation 
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CPUs: designed to 

run a few tasks 

quickly. 

GPUs: designed 

to run many tasks 

efficiently. 

Accelerated Computing 

Add GPUs: Accelerate Applications 
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Fixed function hardware 

Transistors are primarily devoted to data processing 

Less leaky cache 

SIMT thread execution 

Groups of threads formed into warps which always executing same 
instruction 

Cooperative sharing of units with SIMT 

eg. fetch instruction on behalf of several threads or read memory location 
and broadcast to several registers 

Lack of speculation reduces overhead 

Minimal Overhead 

Hardware managed parallel thread execution and handling of divergence 

Energy efficient GPU 
Performance = Throughput 
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Structural Mechanics 

Comp Fluid Dynamics (CFD) 
Electromagnetics 

Signal Processing 
Image Processing 

Video Analytics 

Defense / Govt 

Manufacturing 

 
Reverse Time Migration 
Kirchoff Time Migration 

 
Weather / Climate Modeling 

Molecular Dynamics 
Computational Physics 

Supercomputing 

Oil and Gas 

 
Biochemistry 

Bioinformatics 
Material Science 

Life Sciences 

Tesla 

K10 

Kepler GK104 

Tesla 

K20/K20X 

Kepler GK110 



9 

Product Name K10 K20 K20X 

GPU Architecture Kepler: GK104 GK110 GK110 

# of GPUs 2 1 1 

Peak Single Flops 
Peak SGEMM 

4.58 TF (2.3 TF per GPU)  
2.98 TF 

3.52 TF 
 2.61 TF 

3.95 TF 
2.90 TF 

Peak Double Flops 
Peak DGEMM 

0.19 TF (0.095 TF per GPU) 
0.12 TF 

1.17 TF 
1.10 TF 

1.32 TF 
 1.22 TF 

Memory size 8 GB (4GB per GPU) 5 GB 6 GB 

Memory BW (ECC off) 320 GB/s (160GB/s per GPU) 208 GB/s 250 GB/s 

New CUDA Features GPUDirect w/ RDMA 
GPUDirect (RDMA), Hyper-Q,  

Dynamic  Parallelism 

ECC Features External DRAMs only DRAM, Caches & Reg Files 

# CUDA Cores 3072 (1536 per GPU) 2496 2688 

Total Board Power 225W 225W 235W 

Board Type PCI-e Passive 
PCI-e Passive, 
Active, SXM 

PCI-e Passive 
SXM 
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Kepler GK110 Block Diagram 

7.1B Transistors 

15 SMX units 

1.3 TFLOP FP64 

1.5 MB L2 Cache 

384-bit GDDR5 

PCI Express Gen3 
compliant 
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Kepler GK110 SMX vs Fermi SM 

Ground up redesign for perf/W 

6x the SP FP units 

4x the DP FP units 

Slower FU clocks 

3x sustained perf/W 

~4x the overall instruction throughput 

2x register file size (64K regs) 

2x threadblocks (16) & 1.33x threads (2K) 
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Hyper-Q 
 

FERMI 
1 Work Queue 

KEPLER 
32 Concurrent Work Queues 

0x
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Number of GPUs 

CP2K- Quantum Chemistry 

K20 with Hyper-Q K20 without Hyper-Q

2.5x 

Strong Scaling: 864 water molecules 

16 MPI ranks 

per node 

1 MPI rank 

per node 
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Proxy – A Multi-Process Runtime for MPI 

Why 
Speedups for MPI programs with low-
GPU utilization 

How 
multiple CPU processes  on a single GPU 
simultaneously  

client-server architecture  

client processes share the same CUDA 
context 

When 
Currently on Cray; Production on Linux 
with CUDA 5.5 

GPU 

Proxy Server 

CUDA 

MPI 

Rank 0 

CUDA 

MPI 

Rank 1 

CUDA 

MPI 

Rank 2 

CUDA 

MPI 

Rank 3 



What is Dynamic Parallelism? 

The ability to launch new kernels from the GPU 

Dynamically - based on run-time data 

Simultaneously - from multiple threads at once 

Independently - each thread can launch a different grid 

CPU GPU CPU GPU 

Fermi: Only CPU can generate GPU work Kepler: GPU can generate work for itself 
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CPU Fermi GPU CPU Kepler GPU 

Dynamic Parallelism 
Simpler Code, More General, Higher Performance 



Dynamic Parallelism 

GPU-Side 

Kernel 

Launch 
Efficiency 

Library Calls from Kernels 

Simplify CPU/GPU Divide 

Batching to Help Fill GPU 

Dynamic Load Balancing 

Recursive Parallel Algorithms 

Data-Dependent Execution 



GPU 

Familiar Syntax and Programming Model 

__global__ void B(float *data)  
{ 
    do_stuff(data); 
 
    X <<< ... >>> (data); 
    Y <<< ... >>> (data); 
    Z <<< ... >>> (data); 
    cudaDeviceSynchronize(); 
 
    do_more_stuff(data); 
} 

A 

B 

C 

X 

Y 

Z 

CPU int main() { 
    float *data;     
    setup(data); 
 
    A <<< ... >>> (data); 
    B <<< ... >>> (data); 
    C <<< ... >>> (data); 
 
    cudaDeviceSynchronize(); 
    return 0; 
} 

main 



Simpler Code: LU Example 

LU decomposition (Fermi) 

dgetrf(N, N) { 

  for j=1 to N 

    for i=1 to 64 

      idamax<<<>>> 

      memcpy 

      dswap<<<>>> 

      memcpy 

      dscal<<<>>> 

      dger<<<>>> 

    next i 

 

    memcpy 

    dlaswap<<<>>> 

    dtrsm<<<>>> 

    dgemm<<<>>> 

  next j 

} 

idamax(); 

dswap(); 

dscal(); 

dger(); 

dlaswap(); 

dtrsm(); 

dgemm(); 

GPU Code CPU Code 

LU decomposition (Kepler) 

dgetrf(N, N) { 

  dgetrf<<<>>> 

 

 

 

 

 

 

 

 

 

 

 

 

 

  synchronize(); 

} 

dgetrf(N, N) { 

  for j=1 to N 

    for i=1 to 64 

      idamax<<<>>> 

      dswap<<<>>> 

      dscal<<<>>> 

      dger<<<>>> 

    next i 

    dlaswap<<<>>> 

    dtrsm<<<>>> 

    dgemm<<<>>> 

  next j 

} 

GPU Code CPU Code 
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Source files compiled separately to create independent object files 
 

ab.lib 

a.cu b.cu 

a.obj b.obj + -OR- 

+ 

main1.cpp 

program1.exe 

foo.cu 

+ 

Linker creates GPU Callable Libraries and links with CUDA code 

GPU Callable Libraries 
Direct Access to BLAS and other Libraries from GPU Code 

ab.lib 

program2.exe 

+ 

main2.cpp 

bar.cu 

+ 

cuBLAS 



Network 

Server 1 

GPU1 GPU2 CPU 

GDDR5 
Memory 

GDDR5 
Memory 

Network 
Card 

System  
Memory 

PCI-e 

Server 2 

GPU1 GPU2 CPU 

GDDR5 
Memory 

GDDR5 
Memory 

Network 
Card 

System  
Memory 

PCI-e 

NVIDIA® GPUDirect™ Support for RDMA 
Direct Communication Between GPUs and PCIe devices 
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GPU-aware MPI 

Support GPU to GPU communication through standard MPI interfaces without 
exposing low level details to the programmer (make MPI implementations aware of 
GPU pointers) 

e.g.  enable  MPI_Send,  MPI_Recv  from/to  GPU  memory 

Made possible by Unified Virtual Addressing (UVA) in CUDA 4.0 

MVAPICH2, OpenMPI, Platform MPI 

 

 

 

 

 

 

 

 
 

Code without MPI integration 
At Sender:  

   cudaMemcpy(s_buf, s_device, size, cudaMemcpyDeviceToHost);  

   MPI_Send(s_buf, size, MPI_CHAR, 1, 1, MPI_COMM_WORLD);  

At Receiver:  

   MPI_Recv(r_buf, size, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req);  

   cudaMemcpy(r_device, r_buf, size, cudaMemcpyHostToDevice);  

 

 

Code with MPI integration 
 

At Sender:  

   MPI_Send(s_device, size, …);  

At Receiver:  

   MPI_Recv(r_device, size, …);  
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CUDA Compiler Contributed to Open Source LLVM 

Developers want to build  

front-ends for 

Java, Python, R, DSLs 

 

Target other processors like 

ARM, FPGA, GPUs, x86 

CUDA  
C, C++, Fortran 

LLVM Compiler  
For CUDA 

NVIDIA 
GPUs 

x86 
CPUs 

New Language 
Support 

New Processor 
Support 
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Minimum Change, Big Speed-up 

Application Code 

+ 

GPU CPU 
Compute-Intensive Functions 

Rest of Sequential 
CPU Code 
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Ways to Accelerate Applications 

Libraries Directives 
(OpenACC) 

Programming 

Languages 
(CUDA, ..) 

Applications 

Easiest Approach Maximum 

Performance 

High Level 

Languages 

(Matlab, ..) 

No Need for 

Programming Expertise 

CUDA Libraries are 

interoperable with OpenACC 

CUDA Language is 

interoperable with OpenACC 
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MATLAB Parallel Computing 
On-ramp to GPU Computing 

Most popular math functions on GPUs  
 

 

 

 

 

MATLAB Compiler support (GPU acceleration without 
MATLAB installed) 
GPU features in Communications Systems Toolbox 

• Random number 

generation 

• FFT 

• Matrix 

multiplications 

• Solvers 

• Convolutions 

• Min/max 

• SVD 

• Cholesky and LU 

factorization 
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GPU Accelerated Libraries 
“Drop-in” Acceleration for Your Applications 

 

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra on 
GPU and Multicore NVIDIA cuFFT 

C++ STL Features 
for CUDA 

Sparse Linear 
Algebra 

Building-block 
Algorithms for CUDA IMSL Library 

http://code.google.com/p/thrust/downloads/list


27 

OpenACC Directives  
  

Program myscience 

   ... serial code ... 

!$acc     region 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc     end region  

  ... 

End Program myscience 

CPU GPU 

Your original  

Fortran or C code 

Easy, Open, Powerful 

• Simple Compiler hints 

• Works on multicore CPUs & many core 

GPUs 

• Compiler Parallelizes code 

• Future Integration into OpenMP 

standard planned 

 

 

 

OpenACC

Compiler 

Hint 

http://www.openacc.org 

http://www.openacc-standard.org/
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OpenACC Directives Example 
!$acc data copy(A,Anew) 

 iter=0 

 do while ( err > tol .and. iter < iter_max ) 

 

  iter = iter +1 

  err=0._fp_kind 

 

!$acc kernels 

   do j=1,m 

    do i=1,n 

     Anew(i,j) = .25_fp_kind *( A(i+1,j  ) + A(i-1,j  ) & 

                               +A(i  ,j-1) + A(i  ,j+1)) 

     err = max( err, Anew(i,j)-A(i,j)) 

    end do 

   end do 

!$acc end kernels 

   IF(mod(iter,100)==0 .or. iter == 1)    print *, iter, err 

   A= Anew 

 

 end do 

!$acc end data 

Copy arrays into GPU memory 

within data region 

Parallelize code inside region 

Close off parallel region 

Close off data region,  

copy data back 
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Wide Adoption of Tesla GPUs 

Finance Government Edu/Research Oil and gas Life Sciences Manufacturing 

 
 

Reverse Time 
Migration 

Kirchoff Time 
Migration 

Reservoir Sim 

 
 

Astrophysics 
Lattice QCD 
Molecular 
Dynamics 

Weather / Climate 
Modeling 

 
 

Signal Processing 
Satellite Imaging 
Video Analytics 

Synthetic Aperture 
Radar 

 
 

Bio-chemistry 
Bio-informatics 

Material Science 
Sequence Analysis 

Genomics 

 
 

Risk Analytics 
Monte Carlo 

Options Pricing 
Insurance 
modeling 

 
 

Structural 
Mechanics 

Computational 
Fluid Dynamics 
Machine Vision 

Electromagnetics 

http://www.nvidia.com/page/home.html
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http://www.nvidia.com/teslaapps/  

Over 200 GPU-Accelerated Applications 

http://www.nvidia.com/teslaapps/
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Titan: World’s Fastest Supercomputer 

18,688 Tesla K20X Accelerators 

27 Petaflops Peak: 90% of Performance from GPUs 

17.59 Petaflops Sustained Performance on Linpack 
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Tesla CUDA Architecture Roadmap 
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T10 
Fermi 

Kepler 

Maxwell 
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Integration (memory, processor types, network) 

Further concentration on locality (both HW and SW) 

Reducing overheads (intra- and inter-GPU) 

Continued convergence with consumer technology 

How Will GPUs Evolve Over This Decade? 
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Echelon 
NVIDIA’s Extreme-Scale Computing Project 

DARPA UHPC Program 

Targeting 2018 

Fast Forward Program 
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Which Takes More Energy? 

Performing a 64-bit floating-point FMA: 

893,500.288914668 

                43.90230564772498 

=  39,226,722.78026233027699 

 

+                 2.02789331400154 

=  39,226,724.80815564 

Or moving the three 64-bit operands 20 

mm across the die: 

This one takes over 4.7x the energy today (40nm)! 

Loading the data from off chip takes >> 100x the energy. 

It’s getting worse: in10nm, relative cost will be 17x! 



36 

Power is the main HPC constraint 
Vast majority of work must be done by cores designed for efficiency 

NVIDIA GPU’s are already designed for energy efficiency 

Data movement dominates the power 

Locality at all levels and reduction of overhead is necessary  

GPU computing has a sustainable model 
Aligned with technology trends, supported by consumer markets 

GPUs are the path to the tightly-coupled hybrid processor 
future 

 

Summary 
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Thank you.  

Questions?  
 

Axel Koehler 
Sr. Solution Architect HPC 

akoehler@nvidia.com 


