Teilchenteleskope in der Physik

Astronomie bei sehr hohen Energien - Gammastrahlungsastronomie

Gernot Maier

ASSOCIATION

Inhalt

> Astronomie

- Einführung
- Höchste Energien Gammastrahlung
- > Kosmische Teilchenbeschleuniger
 - Explodierende Sterne (Supernovae)
 - Doppelsternsysteme
 - Supermassive schwarze Löcher
- > Teleskope zur Messung hochenergetischer Gammastrahlung
 - HESS, MAGIC, VERITAS
 - Fermi LAT
 - CTA, AGIS
- > Ausblick

Die Milchstrasse

500 Millionen Sterne

100 000 Lichtjahre = 900 000 000 000 000 000 km = 9x10¹⁷ km

Die Sonne

Die Sonne

Galaxien

Galaxien - Kollisionen

Nicht nur Sterne - Gas und Staub

Radio		Infrared		Ultraviole	t (Gamma-ray	ys
	Microw	aves	Visible		X-rays		
1 m - 1 km	1 cm	1 µm - 1 mm	400-700 nm	10 - 400 nm	0.01 - 10 nm	< 0.01 nm	
	1 K	100 K	10,000 K		10 ⁸ K	10 ¹⁰ K	
			eV		keV	MeV GeV	TeV

Radio		Infrared		Ultraviole	t (Gamma-ray	ys
	Microw	aves	Visible		X-rays		
1 m - 1 km	1 cm 1 K	1 μm - 1 mm 100 K	400-700 nm 10,000 K	10 - 400 nm	0.01 - 10 nm 10 ⁸ K	< 0.01 nm 10 ¹⁰ K	
			eV		keV	MeV GeV	TeV

Charged particles

Multi-wavelength Astronomy

optical

Multi-wavelength Astronomy

optical

Multi-wavelength Astronomy

infrared

optical

x-ray

Die Milchstrasse

Die Milchstrasse

star light

NASA, mwmw.gsfc.nasa.gov

0.4-0.6 μm

Hydrogen 21 cm line, cold interstellar medium (gas)

synchrotron emission from HE electrons moving through interstellar magnetic fields

synchrotron emission from HE electrons moving through interstellar magnetic fields

synchrotron emission from HE electrons moving through interstellar magnetic fields

e contrato de la serie

y-ray

>300 GeV

synchrotron emission from HE electrons moving through interstellar magnetic fields

NASA, mwmw.gsfc.nasa.gov

Arecibo (Radio)

Instruments

Fermi (Gamma-rays)

Suzaku (X-rays)

Spitzer (IR)

VERITAS (Gamma-rays)

Auger (Cosmic Rays)

LIGO (Gravitational waves)

IceCube (Neutrinos)

Fermi LAT all sky view > 100 MeV

Infrared	Visible	Ultraviolet	X-rays	Gamma-rays	
μm - 1 mm 100 K	400-700 nm 10,000 K	10 - 400 nm	0.01 - 10 nm 10 ⁸ K	< 0.01 nm 10 ¹⁰ K	
	eV		keV	MeV GeV	TeV

Construction of the second second

Gernot Maier | Physics with CTA | October, 2010 |

Gernot Maier | Physics with CTA | October, 2010 |

Quellen von Gammastrahlung - Explodierende Sterne

Massive Sterne explodieren am Ende ihres 'Lebens'

Wahrscheinlich die Quellen der kosmischen Strahlung

Tycho's Supernova (1572)

Active Galactic Nuclei

- distant bright galaxies
- central core produces more radiation than rest of galaxy: Active Galactic Nucleus (AGN)
- supermassive black hole:
 10⁹ solar masses
- extremely powerful radio source: quasar
- ~10% of all AGNs produce beams of energetic particles and magnetic fields: jets
- powered by accretion of matter onto a
 supermassive black hole and/or black hole rotation

Active Galactic Nuclei

blue light: synchrotron radiation from HE electrons

jet: relativistic, hot, magnetized plasma

core and

accretion disk

hot spots: shocked jet plasma

distant bright galaxies

 central core produces more radiation than rest of galaxy: Active Galactic Nucleus (AGN)

- supermassive black hole: 10⁹ solar masses
- extremely powerful radio source: quasar
- ~10% of all AGNs produce beams of energetic particles and magnetic fields: jets
- powered by accretion of matter onto a supermassive black hole and/or black hole rotation

Active Galactic Nuclei

blue light: synchrotron radiation from HE electrons

jet: relativistic, hot, magnetized plasma

> hot spots: shocked jet plasma

Schwarze Löcher und Jets

Gamma Ray Bursts (hypernovae)

long GRBs collapse of massive, rapidly rotating stars

Microquasars (X-ray binaries)

(2-10 keV)

Young Stars (Herbig-Haro Objects)

HH30: 1995 - 2000

Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

Quellen von Gammastrahlung - Doppelsternsysteme

Quellen von Gammastrahlung - Doppelsternsysteme

<u>Charged Particle Acceleration -</u> <u>Shocks in the Universe</u>

kitchen sink

Kepler's Supernova

 $\gamma_{\text{TeV}} + \gamma_{\text{star}} \rightarrow e^+ e^-$

Dark Matter

Dark Matter

Understanding the origin of cosmic rays and how they interact with their environment.

Gernot Maier | Physics with CTA | October, 2010 |

Understanding the origin of cosmic rays and how they interact with their environment.

Understanding the nature and variety of black hole particle accelerators.

Gernot Maier | Physics with CTA | October, 2010 |

Understanding the origin of cosmic rays and how they interact with their environment.

Understanding the nature and variety of black hole particle accelerators.

What is the nature of dark-matter particles?

VHE Cherenkov telescopes

MAGIC

P

October 1968

First detection:

1989

Copyright Digital Image Smithsonian Institution, 1998

A CTA telescope

Atmospheric Opacity

Cherenkov light

emitted when velocity of charged particle exceeds local speed of light

Pavel Alekseyevich Cherenkov (Nobel 1958)

Detection of high-energy γ-rays

Fluxes

> flux of strongest γ -ray source (Crab Nebula): ~10⁻⁷ γ 's/m²/s

> satellite with detection area of 1-5 m²: ~15 γ 's / year

>imaging atmospheric Cherenkov telescopes: detection area >10⁵ m²: 50 γ's/h

Background

Cosmic Ray flux typically 10^3 - 10^4 larger than γ -ray flux

Background

Cosmic Ray flux typically 10^3 - 10^4 larger than γ -ray flux

Cherenkov flash is a few nanoseconds long

gamma-rays measured by VERITAS (observation of the Crab Nebula)

(each frame 2 ns long)

gamma-rays 'measured' by VERITAS

Monte Carlo Simulation

(each frame 2 ns long)

VERITAS - Technical Details

Telescope (x 4) 12 m diameter Davies-Cotton f 1.0, 110 m² mirror area

3 adjacent pixel and 2/4 ~10% dead time; ~300 Hz

Gernot Maier | Teilchenteleskope in der Physik | October 2010 |

The Cherenkov Telescope Array

CTA Consortium: >22 countries (big: D, F, US) >600 scientists €180 M (invest) first science data 2014

north and south array - full sky coverage

Gernot Maier | Physics with CTA | October, 2010 |

