

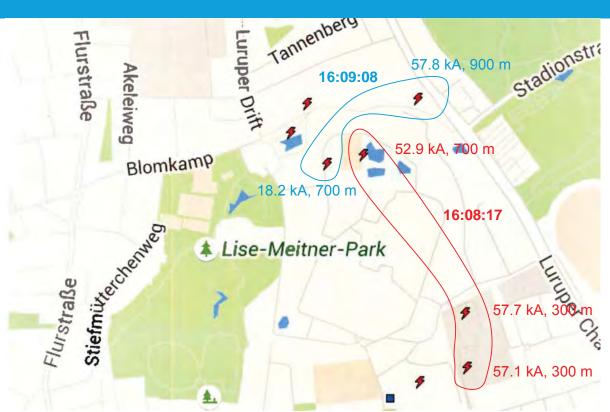
Inhalt

Am Samstag, den 13. Juni 2015 um 16:08:17 und 16:09:08 MESZ gab es zwei schwere Blitztreffer auf dem DESY-Gelände in Hamburg. Darüber soll hier berichtet werden.

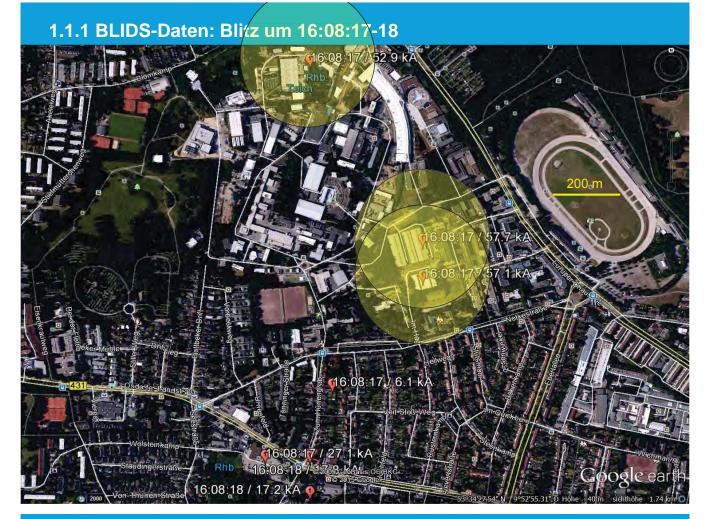
- > Das Ereignis: Was waren das für Blitze und wo schlugen sie ein?
- > Die Schäden: Was ging wie kaputt (und was nicht)?
- > Die Folgerungen: Wie kann man sich besser gegen sowas wappnen?

1. Das Blitzschlagereignis

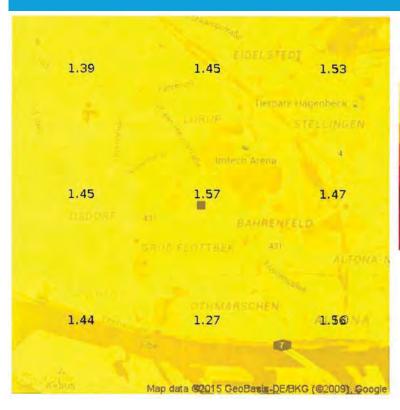
Das Blitzschlagereignis wurde von zwei völlig unabhängigen Systemen registriert, von elektromagnetischen und seismischen Sensoren.


1.1 Elektromagnetische Daten

- > BLIDS, der Blitz-Informationsdienst von Siemens, nutzt 148 verbundene Messstationen in Europa, um Gewitterblitze über ihre elektromagnetische Abstrahlung auf bis zu 200 m genau zu orten.
- Der Bezug der Daten ist kostenpflichtig, Hauptkunden sind Blitzschutzfirmen und Versicherungen. Die für DESY tätige Blitzschutzfirma D.H.W. Schultz & Sohn GmbH stellte uns die Daten zur Verfügung.
- > Für jeden Blitz werden Zeitpunkt, Typ, Länge, Spitzenstrom und Polarität, sowie die Koordinaten des Einschlagortes gemessen.
- > BLIDS registrierte am 13.06.2015 von 16:08:17 bis 16:09:09 MESZ insgesamt 13 Teilblitze vom Typ Wolke-Erde negativ.

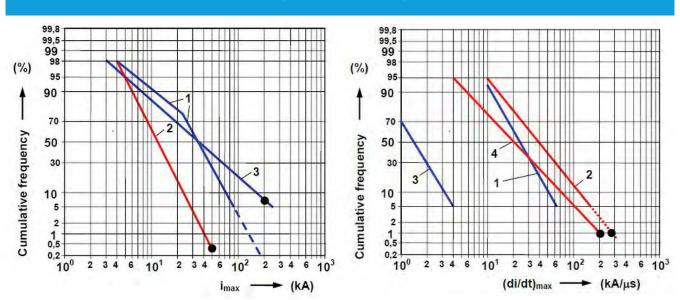

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 3

1.1.1 BLIDS-Daten



1.1.1 BLIDS-Daten: Blitzdichte bei DESY

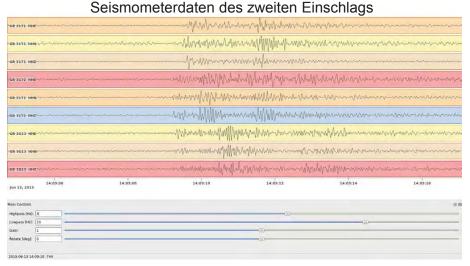
Raster 3x3 km um den Abfrageort Erd-Blitze pro Quadratkilometer undJahr



In den PETRA-Ring (A = 0.42 km²) schlagen also 0.66 Blitze pro Jahr. Etwa ein Drittel davon hat 50 kA oder mehr. Solch einen Blitz erwarten wir also etwa alle 4.5 Jahre. Soviel zur Statistik.

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 7

1.1.2 Blitzstromparameter i_{max} und (di/dt)_{max}



1: negativer Erstblitz 2: negativer Folgeblitz 3: positiver Erstblitz

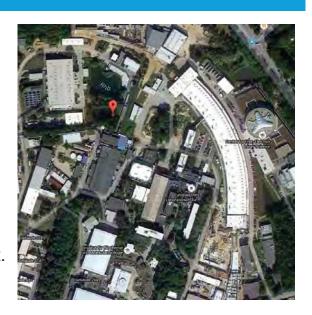
- > Spannungshub am Erdungswiderstand bei Direkteinschlag: $\Delta V = i_{max}R_{E}$
- In einer Leiterschleife induzierte Spannung: V_{ind} = M(di/dt)_{max}. Wegen der steilen Pulse ist Blitzschlag ein HF-Phänomen: Z = R + jωL

1.2 Seismometrische Daten

- Im Rahmen von Untersuchungen zur Aufstellgenauigkeit von Beschleunigermagneten wurden auf dem DESY-Gelände drei Seismometer zur Messung von Bodenvibrationen installiert (W. Bialowons).
- > Diese registrieren auch die durch Blitzeinschläge verursachten Bodenschwingungen (Donnerknall, Erhitzung von Bodenfeuchte).

1.2 Seismometrische Daten

Die Seismometer werden auch vom Zentrum für marine und atmosphärische Wissenschaften (ZMAW) zur Beobachtung von Erdfällen in HH-Flottbek benutzt. Dirk Becker vom ZMAW hat die Blitzschlagdaten ausgewertet.



Zeiten in UTC = MESZ – 2h

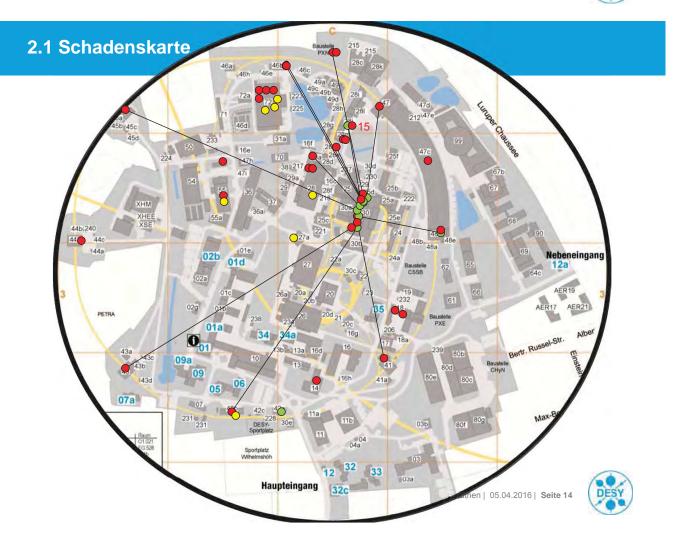
1.2 Seismometrische Daten

- Die Auflösung der sich überlagernden Teilblitze ist schwierig. Beim ersten Blitzschlag gelang aber auch die Rekonstruktion des nördlichen Teilblitzes bei der AMTF-Halle.
- Die Bestimmung der Einsatzzeit lässt Ermessensspielraum. Verpickt man sich um 0.1 s, resultiert daraus ein Ortsfehler von 50-60 m, je nach angenommener Schallgeschwindigkeit.
- Die Seismometrie liefert keine zusätzliche Information, ist aber ein interessanter Crosscheck.

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 11

1.3 Charakterisierung der Blitzschläge

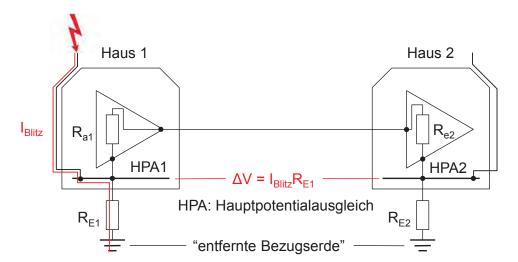
- Elektromagnetische und seismometrische Messungen lassen Blitzeinschläge in die CHyN-Baukräne, in die AMTF-Halle und in die FLASH-Halle vermuten. Angesichts der begrenzten Ortsauflösung sind andere Einschlagorte nicht ausgeschlossen.
- Drei Teilblitze waren mit Stromscheitelwerten > 50 kA außergewöhnlich stark und sollten Spuren an Fanganlagen hinterlassen haben. Trotz längerer Suche wurde eine solche "Smoking Gun" nicht gefunden.
- Wegen des großen Potentialtrichters um die Einschlagstelle können auch benachbarte Gebäude noch erhebliche Potentialanhebungen erfahren.
- Induktionswirkungen k\u00f6nnen \u00fcberall auf dem DESY-Gel\u00e4nde stattgefunden haben.



2. Die Schadensbilanz

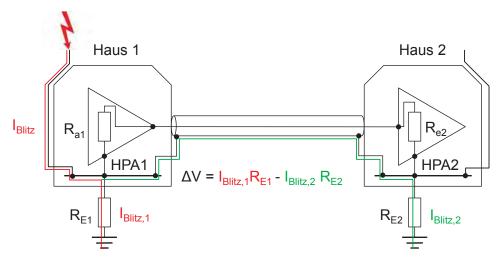
- Die Schadensbilanz ist eindrucksvoll. Auf Nachfrage haben mir 20 Kollegen 91 Schäden gemeldet (danke), davon 74 ernste.
- > Die Schäden lassen sich grob kategorisieren:
 - Durch Überspannung zerstörte Geräte:
 Der Hauptanteil waren Eingangs- und Ausgangsstufen von Interface-Modulen für Kabelverbindungen. Besonders betroffen waren Verbindungen von Geb. 30 in alle möglichen PETRA- und FLASH-Hallen. Das sind sehr wahrscheinlich Folgen von Direkteinschlägen.
 - Transiente elektrische Störungen: ○ Viele Geräteausfälle ließen sich durch Neustart, Aus- und wieder Einschalten beheben. Die Schäden in der IT-Infrastruktur waren ausschließlich dieser Art. Auch bei den Senderanlagen von PETRA und DESY, sowie in verschiedenen Bereichen der AMTF-Halle traten solche Störungen auf, teilweise als Folge von Stromausfällen.
- > Die Schäden verteilen sich folgendermaßen über das Gelände:

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 13

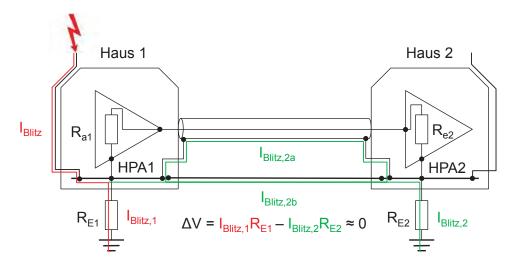

3. Die Folgerungen

- Der größte Teil der Schäden entstand in Komponenten, die mit der Verkabelung von Gebäuden zu tun haben. Was kann man da besser machen?
- > Es gibt verschiedene Maßnahmen zur Kontrolle des Blitzstromflusses zwischen verkabelten Gebäuden:
 - geschirmte Kabel
 - vermaschte Erdungsanlagen
 - Blitzstromableiter und Überspannungsschutz
 - optische Verbindungen

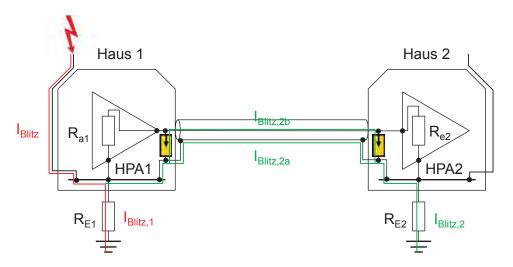
Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 15


3.1 Blitzstromfluss zwischen verkabelten Gebäuden

- > Bei Klingeldrahtverkabelung mit Rückleitung über die Bezugserde liegt die volle Spannung $\Delta V = I_{Blitz}R_{E1}$ am Serienwiderstand $R_{a1}+R_{e2}$.
- > Bei $I_{Blitz,max}$ = 50 kA und R_{E1} = 1 Ω (bei DESY gemessen) geht das alles in Rauch und Flammen auf.

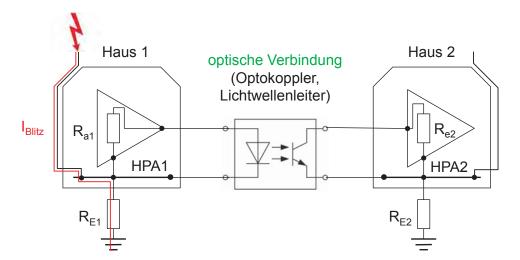

3.1 Blitzstromfluss zwischen verkabelten Gebäuden

- > Bei Koaxialverkabelung fließt ein Teil des Blitzstroms über den Kabelschirm und R_{E2} ab. Die Spannung ΔV am Serienwiderstand R_{a1}+R_{e2} wird kleiner.
- > Bei $I_{Blitz,max}$ = 50 kA und R_{E1} = R_{E2} = 1 Ω wird man viele Kabel brauchen, um ΔV hinreichend klein zu bekommen (Schirminduktivität).

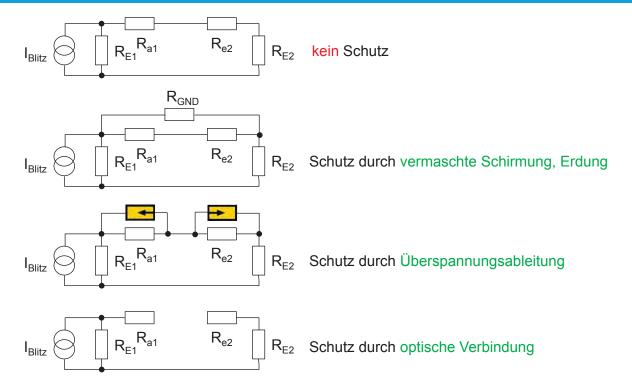

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 17

3.1 Blitzstromfluss zwischen verkabelten Gebäuden

- Bei Verbindung der Hauptpotentialausgleiche fließt ein großer Teil des Blitzstroms über R_{E2} ab. Gelingt das gut, wird die Spannung ΔV am Serienwiderstand R_{a1}+R_{e2} ungefährlich.
- > Die besten Möglichkeiten hat man beim Bau der Gebäude (gemeinsames Erdungssystem). Aber gute Kabelpritschen helfen auch.


3.1 Blitzstromfluss zwischen verkabelten Gebäuden

- Ist eine Erdungsvermaschung nicht machbar, kann man Blitzstromableiter und/oder Überspannungsschutz einbauen. Die wirken als Shunts für R_{a1} und R_{e2}.
- > Die Produktvielfalt ist überwältigend. Mit dem Entwurf eines Systems müssen Blitzschutzfachkräfte betraut werden.


Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 19

3.1 Blitzstromfluss zwischen verkabelten Gebäuden

- > Bei ausschließlich optischer Verbindung der Gebäude ist nur das geblitzte Haus vom Spannungshub $\Delta V = I_{Blitz}R_{E1}$ betroffen kein Problem, auch nicht bei 50 kV:
- > Bei IT gab es am 13.06.2015 kein Problem, das über normalen Service hinausging (arbeitsmäßig und finanziell).

3.2 Ersatzschaltbilder der Schutzverfahren

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 21

3.3 Risikoabwägung

- > Blitzschutz ist immer Risikooptimierung: Man will nicht mehr Geld dafür ausgeben als hin und wieder für die Reparatur zerstörter Geräte.
- > Man muss also erstmal ein paar Zahlen zusammentragen:
 - Kosten von Reparaturen und/oder Ersatzbeschaffung
 - Kosten eines Tages Ausfall von FLASH oder PETRA
 - Kosten von Blitzschutzmaßnahmen
 - Wahrscheinlichkeit eines Blitzschutzschadens
 - usw.
- > Wenn das weiter verfolgt werden soll, helfe ich gern mit.

4. Zusammenfassung

- Der Doppelblitzschlag am 13.06.2015 hat bei DESY in Hamburg beträchtlichen Schaden angerichtet und zu einem längeren Betriebsausfall geführt.
- > Elektromagnetische und seismische Sensoren liefern Informationen über das Ereignis, die das Schadensbild erklären helfen.
- Unterschiedlich geschützte Systeme haben unterschiedlich auf das Ereignis reagiert.
- Zur Nachbesserung stehen verschiedene Schutzmaßnahmen zur Wahl, die sich in Aufwand und Kosten unterscheiden.
- > Für die notwendige Risikoanalyse sind mehr Informationen auch finanzieller Art nötig.

Herbert Kapitza | Technisches Seminar DESY, Zeuthen | 05.04.2016 | Seite 23

Dank an

- > Jens-Peter Jensen für den interessanten Forschungsauftrag,
 - Firma D.H.W. Schultz & Sohn für die Überlassung der BLIDS-Daten,
 - Dirk Becker vom ZMAW für die Auswertung der Seismometerdaten,
 - Wilhelm Bialowons für die Einführung in die DESY-Seismometrie,
- Olaf Mayer für Erdwiderstandsmessungen und Einschlagstellersuche,
- > alle Kollegen, die Schäden gemeldet haben,
 - euch fürs Zuhören.