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Standard model
The Standard Model (SM) is a synthesis of three of the four forces of nature described by gauge theories with
coupling constants:

Strong Interactions: αs ∼ 1
Electromagnetic interactions: αem ≈ 1/137
Weak interactions: GF ≈ 10−5 GeV−2.

Basic constituents of matter:
Six quarks, u, d, s, c, b, t , each in 3 colors, and six leptons e, νe, µ, νµ, τ, ντ
The quarks and leptons are classified into 3 generations of families.
The interactions between the particles are mediated by vector bosons: the 8 gluons mediate strong
interactions, the W± and Z mediate weak interactions, and the electromagnetic interactions are carried
by the photon γ.
The weak bosons acquire a mass through the Higgs mechanism.
The SM is a local gauge field theory with the gauge group SU(3)× SU(2)× U(1) specifying the
interactions among these constituents.

Masses in the Standard Model
Parameters Number Comments
Masses of quarks 6 u, d, s light

c, b heavy
t = 175± 6 GeV

Masses of leptons 6 e, µ, τ
Mνe, νµ, ντ non-zero

Mass of W± 1 80.3 GeV
Mass of Z 1 91.2 GeV
Mass of gluons, γ 0 (Gauge symmetry)

Mass of Higgs 1 125.03+0.26
−0.27 (stat)+0.13

−0.15 (sys) GeV discovered at LHC, 2012
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QCD versus QED
QCD is the theory of strong interactions formulated in terms of quarks and gluons as the basic degrees
of freedom of hadronic matter.
Conventional perturbative approach cannot be applied for hadronic process at scales ∼

< 1 GeV since the
strong coupling constant αs ∼ 1
=⇒ we cannot calculate the masses of mesons and baryons from QCD even if we are given αs and the
masses of quarks.
Bound state in QCD very different from QED e.g. the binding energy of a hydrogen atom is to a good
approximation the sum of it constituent masses. Similarly for nuclei the binding energy is O(MeV). For
the proton almost all the mass is attributed to the strong non-linear interactions of the gluons.
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QCD versus QED

QCD: Interaction due to exchange of gluons. In the energy range of  ~ 1GeV the coupling 
constant is ~1   
 We can no longer use perturbation theory 

Quantum Electrodynamics (QED): The interaction is due to the exchange of photons. Every 
time  there is an exchange of a photon there is a correction in the interaction of the order of 
0.01.  
  we can apply perturbation theory reaching whatever accuracy we like 
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QCD on the lattice

Why Lattice QCD?

Discrete space-time lattice acts as a non-perturbative regularization scheme with the lattice spacing a
providing an ultraviolet cutoff at π/a→ no infinities. Furthermore, renormalized physical quantities have
a finite well behaved limit as a→ 0.

Can be simulated on the computer using methods analogous to those used for Statistical Mechanics
systems. These simulations allow us to calculate correlation functions of hadronic operators and matrix
elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees
of freedom.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant αs and the masses
of the up, down, strange, charm and bottom quarks (the top quark is too short lived).
=⇒Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly
from the QCD Langragian.
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Walking down the street one night, someone found Nasruddin crawling on his hands and knees under a lamp
post near his own front door..
Nasruddin, what’s wrong? What are you doing here?
Looking for my house key. I can’t get in until I find it..
Oh? Let me help you.
The friend joined Nasruddin in the search, and together they
combed all the area under the lamp, but could find nothing.
That’s strange, Nasruddin. It’s just not here. Are you sure this is
where you dropped it?
Here? No, of course not. I dropped the key over there in the shad-
ows by the door.
But - Nasruddin, if you lost the key there, why are you looking here
under the lamp?
Well, it’s very simple. Over there it’s so dark I can’t see a thing, and
here it’s as bright as day!
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Path Integrals-An overview
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Path integrals in one-dimensional quantum mechanics
Time evolution of a quantum mechanical system:

|ψ(tf )〉 = e−iH(tf−ti ) |ψ(ti )〉 ,where H is the Hamiltonian and ~ is set to one.

Evolution of a quantum position eigenstate |xi〉 from time ti to time tf:

〈xf , tf | xi , ti〉 = 〈xf | e
−iH(tf−ti ) |xi〉

Break t ≡ tf − ti into a large number N of time slices separated by ∆t = (tf − ti )/N:

e−iHt = e−iH∆t
∫

dxN−1 |xN−1〉 〈xN−1| e−iH∆t
∫

dxN−2 |xN−2〉 〈xN−2| · · · e−iH∆t

〈xk+1| e
−i∆t

(
p̂2
2m +V (x̂)

)
|xk 〉

∆t→0∼
∫

dp
2π
〈xk+1| p〉e−i∆t p2

2m e−i∆tV (xk )〈p |xk 〉

∼
∫

dp
2π

eip(xk+1−xk )−i∆t p2
2m−i∆t V (xk ) =

√
2mπ
∆t

e
i∆t

[
m
2

(
(xk+1−xk )

∆t

)2
−V (xk )

]
+O(∆t2)

〈xf | e
−iH(tf−ti ) |xi〉 =

∫
D(x1, · · · , xN−1)e

i∆t
∑

k

[
m
2

( xk+1−xk
∆t

)2
−V (xk )

]

→
∫ x(t)=xf

x(0)=xi

D[x(t)]eiSclassical [x(t)]

i.e. the evolution operator is the sum over all paths weighted by the exponential of the classical action.
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Many degrees of freedom:

〈
x1

f , · · · , x
N
f

∣∣∣ e−iH(tf−ti )
∣∣∣x1

i , · · · , x
N
i

〉∫ x1(t)=x1
f ,··· ,x

N (t)=xN
f

x1(0)=x1
i ,··· ,x

N (0)=xN
i

D[x1(t), · · · , xN (t)]eiSclassical [x
1(t),··· ,xN (t)]

Time-ordered product

T̂O(t1)O(t2)e−iHt = e−iH(tf−t2)O(t2)e−iH(t2−t1)O(t1)e−iH(t1−ti )

→
∫
D[x(t)] O(x(t1)) O(x(t2)) eiScl [x(t)]

i.e. we automatically get the time-ordered product.

Classical limit
Include ~ in the expressions and consider ~→ 0

∫
D[x(t)] eiScl [x(t)]/~ SPA→ eiScl [xcl (t)]/~

(
det

(
m

d2

dt2
+ V ′′(x)

))−1/2

+O(~)

i.e. the leading correction are quadratic fluctuations around the classical path.
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Rotation to Euclidean time
Under Wick rotation

x0 ≡ t → −ix4 ≡ −iτ ,

p0 ≡ E → ip4 .

The Euclidean convention is

x2
E =

4∑
i=1

x2
i = ~x 2 − t2 = −x2

M ,

p2
E =

4∑
i=1

p2
i = ~p 2 − E2 = −p2

M .

e−τH →
∫
D[x1, · · · , xN−1]e

−∆τ
∑

k

[
m
2

( xk−xk−1
∆τ

)2
+V (xk−1)

]

i.e. the Lagrangian is effectively replaced by the Hamiltonian in the exponent
Euclidean path purely real

Similar to statistical mechanics: Z = Tre−τH =
∫

dx 〈x| e−Hτ |x〉 =
∫
D(x1, · · · , xN )e−S(x1,··· ,xN )

S[x ] ≡
∫ τf

τi

dτ L(x, ẋ) ≡
∫ τf

τi

dt

[
m ẋ(τ)2

2
+ V (x(τ))

]
,

=⇒ forms the basis of numerical simulations
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Low lying spectrum

Setting
xi = xf ≡ x tf − ti ≡ t = τ

the propagator is written as
〈x| e−Ht |x〉 =

∑
n

〈x| ψn〉 e−Ent 〈ψn| x〉

where |ψn〉 is the energy eigenstate with eigenvalue En. The sum is dominated by the lowest-energy states
when T is large, because of the exponentials, and in the limit of very large T only the groundstate, |ψ0〉,
contributes:

〈x| e−Ht |x〉 t→∞−→ e−E0 t |〈x| ψ0〉|2 .

We extract the groundstate energy E0 by integrating over x ,∫
dx 〈x| e−Ht |x〉 t→∞−→ e−E0 t

,

and then, going back to the previous equation, we determine the groundstate wave-function ψE0 (x) ≡ 〈x| E0〉.
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Numerical evaluation

Develop a numerical procedure for evaluating the propagator using a path integral in its discrete version

tj = ti + j ∆t for j = 0, 1 . . .N ∆t = t

→ x = {x(t0), x(t1) . . . x(tN )}: refer to such a path as a “configuration”.
Integral over all paths becomes an ordinary integral over all possible values for each of the x(tj )’s:

∫
Dx(t)→ A

∫ ∞
−∞

dx1 dx2 . . . dxN−1, xj ≡ x(tj ) , A =

(
2πm
∆t

)N/2

We don’t integrate over the endpoints since they are held fixed; for example, in the Tre−tH the boundary
conditions are: x0 = xN = x.
=⇒ we have reduce Quantum Mechanics to a problem in numerical integration.

Comment:
(xj−xj−1)

∆t can be arbitrarily large in our path integral; i.e. paths can be arbitrarily rough. While not
so important for our one-dimensional problem, this becomes a crucial issue for four-dimensional field theories.
It is dealt with using renormalization theory.
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Evaluation of excited states
To analyze excited states using path integrals, we interrupt the propagation of the groundstate by introducing
new operators at intermediate times. Consider, for example,

〈x(t2)x(t1)〉 ≡
1
Z

Trx̂(t2)x̂(t1) e−H(tf−ti ) =

∫
Dx(t) x(t2)x(t1) e−S[x ]∫
Dx(t) e−S[x ]

, t2 > t1

with xi = xf = x .
The numerator on the right-hand side equals∫

dx 〈x| e−H(tf−t2) x̂ e−H(t2−t1) x̂ e−H(t1−ti) |x〉 .

Setting T = tf − ti and t = t2 − t1 we can rewrite the full expression as

〈x̂(t2)x̂(t1)〉 =
1
Z

∑
n

〈ψn| eHt2 x̂e−Ht2 eHt1 x̂e−Ht1 e−HT |ψn〉 =

∑
n e−EnT 〈ψn| x̂ e−(H−En)t x̂ |ψn〉∑

e−EnT
.

If T � t and large, then the groundstate |ψ0〉 dominates:

G(t) ≡ 〈x(t2)x(t1)〉 →
∑

m

〈ψ0| x̂ |ψm〉 〈ψm| e−(H−E0)t x̂ |ψ0〉 .

In our harmonic oscillator example, the state propagating between the two x ’s cannot be |ψ0〉 since x switches
the parity of the state. Thus if we now make t large (but still� T )

G(t)
t large−→ |〈ψ0| x |ψ1〉|2 e−(E1−E0)t

where |ψ1〉 is the first excited state. Consequently we can extract the first excitation energy from the large-t
dependence of G(t),

log

(
G(t)

G(t + a)

)
→ (E1 − E0)a,

and then, going back to G(t), we can determine the quantum mechanical transition matrix element 〈ψ0| x |ψ1〉.
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Monte Carlo averages
Here we focus on the zero-temperature limit of large T .
For an arbitrary functional Γ[x ] employ a Monte Carlo procedure:

〈Γ[x ]〉 =

∫
Dx(t) Γ[x ] e−S[x ]∫
Dx(t) e−S[x ]

,

is a weighted average over paths with weight exp(−S[x ]). We generate a large number, Ncf , of random paths
or configurations,

x (α) ≡ {x (α)
0 x (α)

1 . . . x (α)
N−1} α = 1, 2 . . . ,Ncf ,

on our grid in such a way that the probability P[x (α)] for obtaining any particular path x (α) is

P[x (α)] ∝ e−S[x(α)]
.

Then an unweighted average of Γ[x ] over this set of paths approximates the weighted average over uniformly
distributed paths:

〈Γ[x ]〉 ≈ Γ ≡
1

Ncf

Ncf∑
α=1

Γ[x (α)].

Γ is our “Monte Carlo estimator” for 〈Γ[x ]〉 on our lattice.
The Monte Carlo uncertainty σΓ in our estimate is a potential source of error; it is estimated in the usual fashion:

σ
2
Γ
≈

1
Ncf

 1
Ncf

Ncf∑
α=1

Γ2[x (α)]− Γ
2

 .

This becomes

σ
2
Γ

=
〈Γ2〉 − 〈Γ〉2

Ncf
for large Ncf .

The statistical uncertainties vanish as 1/
√

Ncf when Ncf increases.
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Metropolis Algorithm
We need an algorithm to to create our set of random paths x (α) with probability e−S[x ]

Z , where
Z =

∫
D[x(t)]e−S[x ].

=⇒ a simple procedure, though not always the best, is the Metropolis Algorithm:

Start with an arbitrary path x (0)

Modify by visiting each of the sites on the lattice, and randomizing the xj ’s at those sites, one at a time, in
a particular fashion as described below→ generate a new random path from the old one: x (0) → x (1).
This is called “updating” the path.

Apply to x (1) to generate path x (2), and so on until we have Ncf random paths.

The algorithm for randomizing xj at the j th site is:

Generate a random number −ε < ζ ≤ ε, with uniform probability;
Let xj → xj + ζ and compute the change ∆S in the action;

If ∆S < 0 retain the new value for xj , and proceed to the next site;

If ∆S > 0 accept change with probability exp(−∆S) i.e. generate a random number η uniformly
distributed between 0 and 1; retain the new value for xj if exp(−∆S) > η, otherwise restore the old
value; proceed to the next site.

Comments:

Choice of ε: should be tuned so that 40%–60% of the xj ’s are changed on each pass (or “sweep”)
through the lattice. Then ε is of order the typical quantum fluctuations expected in the theory. Whatever
the ε, successive paths are going to be quite similar and so contain rather similar information about the
theory. Thus when we accumulate random paths x (α) for our Monte Carlo estimates we should keep only
every Ncor -th path; the intervening sweeps erase correlations, giving us configurations that are
statistically independent. The optimal value for Ncor depends upon the theory, and can be found by
experimentation. It also depends on the lattice spacing a.
Initial configuration: Guess the first configuration→ discard some number of configurations at the
beginning, before starting to collect x (α) ’s. This is called “thermalizing the lattice.”

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD DESY Summer School, 12/8/2019 18 / 34



Metropolis Algorithm
We need an algorithm to to create our set of random paths x (α) with probability e−S[x ]

Z , where
Z =

∫
D[x(t)]e−S[x ].

=⇒ a simple procedure, though not always the best, is the Metropolis Algorithm:

Start with an arbitrary path x (0)

Modify by visiting each of the sites on the lattice, and randomizing the xj ’s at those sites, one at a time, in
a particular fashion as described below→ generate a new random path from the old one: x (0) → x (1).
This is called “updating” the path.

Apply to x (1) to generate path x (2), and so on until we have Ncf random paths.

The algorithm for randomizing xj at the j th site is:

Generate a random number −ε < ζ ≤ ε, with uniform probability;
Let xj → xj + ζ and compute the change ∆S in the action;

If ∆S < 0 retain the new value for xj , and proceed to the next site;

If ∆S > 0 accept change with probability exp(−∆S) i.e. generate a random number η uniformly
distributed between 0 and 1; retain the new value for xj if exp(−∆S) > η, otherwise restore the old
value; proceed to the next site.

Comments:

Choice of ε: should be tuned so that 40%–60% of the xj ’s are changed on each pass (or “sweep”)
through the lattice. Then ε is of order the typical quantum fluctuations expected in the theory. Whatever
the ε, successive paths are going to be quite similar and so contain rather similar information about the
theory. Thus when we accumulate random paths x (α) for our Monte Carlo estimates we should keep only
every Ncor -th path; the intervening sweeps erase correlations, giving us configurations that are
statistically independent. The optimal value for Ncor depends upon the theory, and can be found by
experimentation. It also depends on the lattice spacing a.
Initial configuration: Guess the first configuration→ discard some number of configurations at the
beginning, before starting to collect x (α) ’s. This is called “thermalizing the lattice.”

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD DESY Summer School, 12/8/2019 18 / 34



Statistical errors
An important part of any Monte Carlo analysis is the estimate of the statistical errors.

The “statistical bootstrap,” method:
The bootstrap procedure provides new, almost zero-cost random ensembles of measurements by
synthesizing them from the original ensemble of Ncf measurements.

Consider an ensemble {G(α), α = 1 . . .Ncf} of Monte Carlo measurements
I Construct a “bootstrap copy” of that ensemble by selecting G(α) ’s at random from the original

ensemble, taking Ncf in all while allowing duplications and omissions
→ resulting ensemble of G’s may have two or three copies of some G(α) ’s, and no copies of others

I Use new ensemble to obtain a new estimate of some the quantity of interest.
I Repeat this procedure to generated as many bootstrap copies of the original ensemble as one

wishes, and from each we can generate a new estimate.
The distribution of these estimates approximates the distribution of the quantity that would have been
obtained from the original Monte Carlo, and so can be used to estimate the statistical error in our original
estimate.
The “Jackknife” method: Similar to boostrap but remove a set of measurements at a time from the
sample set. In general easier to use than boostrap.
The “binning” method:
At the end of a simulation we have set of configurations x (α), and for each a set of measurements
like G(α), our propagator. We partially average or bin the measurements: For example, instead of storing
each of

G(1) G(2) G(3) G(4) G(5)
. . .

we might instead store

G
(1) ≡

G(1) + G(2) + G(3) + G(4)

4
G

(2) ≡
G(5) + G(6) + G(7) + G(8)

4
. . .

Binning reduces or can even remove the effects of correlations between different configurations.
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Consider an ensemble {G(α), α = 1 . . .Ncf} of Monte Carlo measurements
I Construct a “bootstrap copy” of that ensemble by selecting G(α) ’s at random from the original

ensemble, taking Ncf in all while allowing duplications and omissions
→ resulting ensemble of G’s may have two or three copies of some G(α) ’s, and no copies of others

I Use new ensemble to obtain a new estimate of some the quantity of interest.
I Repeat this procedure to generated as many bootstrap copies of the original ensemble as one

wishes, and from each we can generate a new estimate.
The distribution of these estimates approximates the distribution of the quantity that would have been
obtained from the original Monte Carlo, and so can be used to estimate the statistical error in our original
estimate.
The “Jackknife” method: Similar to boostrap but remove a set of measurements at a time from the
sample set. In general easier to use than boostrap.
The “binning” method:
At the end of a simulation we have set of configurations x (α), and for each a set of measurements
like G(α), our propagator. We partially average or bin the measurements: For example, instead of storing
each of

G(1) G(2) G(3) G(4) G(5)
. . .

we might instead store

G
(1) ≡

G(1) + G(2) + G(3) + G(4)

4
G

(2) ≡
G(5) + G(6) + G(7) + G(8)

4
. . .

Binning reduces or can even remove the effects of correlations between different configurations.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD DESY Summer School, 12/8/2019 19 / 34



Scalar field theory
Let the continuum~r be defined on lattice points i.e. ~r → ~n ≡ (n1, n2, n3)a where a is the lattice spacing.
=⇒ equivalent to many-body problem where:

x̂i , p̂i → φ̂(~n), π̂(~n) x̂i |x〉 = xi |x〉 → φ̂(~n) = φ(~n) |φ〉 .

We then have

∫
d3r
{

1
2
π

2(~r) +
1
2
|~∇φ(~r)|2 + V (φ(~r))

}
→
∑
~n

a3

{
1
2
π

2(~n) +
1

2a2

3∑
i=1

|φ(~n + aµi )− φ(~n)|2 + V (φ(~n))

}

where µi denotes a displacement by one lattice site in the i th direction.
The evolution operator in Euclidean time:

e−t
∑
~n a3

{
1
2π

2(~n)+F (φ(~n))
}

=

∫
D[φ(~n)]e

−∆ta3 ∑
~n,k

[
1

2∆t2
(φk+1(~n)−φk (~n))2+F (φk (~n))

]

Take isotropic lattice i.e. ∆t = a
=⇒ time slicing replaces π̂2(~n) by 1

∆t (φk+1(~n)− φk (~n))2 ≡ 1
∆t (φ(n + aµ0)− φ(n))2 which has the same

structure as the discrete spatial derivative and where n = (n0, n1, n2, n3)a.

=⇒ O(φ)e−t
∫

d3 r
{

1
2π

2(~r)+ 1
2 |
~∇φ(~r)|2+V (φ(~r))

}
→
∫
D[φ(n)]O(φ)e−Scl [φ]

where Scl[φ] =
∑

n a4
{∑3

i=0
(φ(n+aµi )−φ(n))2

a2 + V (φ(n))

}
.

Note that Scl is completely symmetric in time and space→ if we choose periodic b.c. then the shortest
dimension acts as a finite temperature.
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Coherent States for bosons
Goal: generalize the scalar field example for second quantized boson and fermion fields.
For the Feynman path integral of our 1-d QM example we needed:

Eigenstates of x̂ , x̂ |x〉 = x |x〉 and
Unity:

∫
dx |x〉 〈x| = 1

The analogs for creation and annihilation operators are provided by boson coherent states.
Consider a creation operator a† then[

â, â†
]

= 1 â† |n〉 =
√

n + 1 |n + 1〉 â |n〉 =
√

n |n − 1〉 |n〉 =
1
√

n!

(
â†
)n
|0〉

Define the coherent state |z〉 by

|z〉 ≡ eza† |0〉 =
∑

n

zn

n!

(
â†
)n
|0〉 =

∑
n

zn

√
n!
|n〉

Properties:

â |z〉 =
∑

n

zn

√
n!

â |n〉 = z
∑

n

zn−1√
(n − 1)!

|n − 1〉 = z |z〉

〈z| z′〉 =
∑
mn

〈m|
z∗m

√
m!

z′n
√

n!
|n〉 = ez∗z′

〈z| : A(â†â) : |z〉′ = ez∗z′A(z∗, z′) (1)

1 =

∫
dzdz∗

2πi
e−z∗z′ |z〉 〈z|
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Coherent States for bosons
Goal: generalize the scalar field example for second quantized boson and fermion fields.
For the Feynman path integral of our 1-d QM example we needed:

Eigenstates of x̂ , x̂ |x〉 = x |x〉 and

Unity:
∫

dx |x〉 〈x| = 1

The analogs for creation and annihilation operators are provided by boson coherent states.
Consider a creation operator a† then[

â, â†
]

= 1 â† |n〉 =
√

n + 1 |n + 1〉 â |n〉 =
√

n |n − 1〉 |n〉 =
1
√

n!

(
â†
)n
|0〉

Define the coherent state |z〉 by

|z〉 ≡ eza† |0〉 =
∑

n

zn

n!

(
â†
)n
|0〉 =

∑
n

zn

√
n!
|n〉

Generalize for a set of creation operators â†α

|z〉 = e
∑
α zα â†α |0〉

âα |z〉 = zα |z〉

〈z| : A(â†â) : |z〉′ = e
∑
α zαZ′αA(z∗, z′)

1 =

∫ ∏
α

dzαz∗α
2πi

e−z∗αz′α |z〉 〈z| ≡
∫

dµ(z) |z〉 〈z|
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Path integral using coherent states

Time slicing the evolution operator:

〈zf | e
−tH |zi〉 = 〈zf | e

−∆tH
∫

dµ(zN−1) |zN−1〉 〈zN−1| e−∆tH
∫

dµ(zN−2) · · · e−∆tH |zi〉

The matrix element of the infinitesimal evolution operator is

dµ(zk ) 〈zk | e−tH |zk−1〉 =
∏
α

dz∗k,αdzk,α

2iπ
e−

∑
α z∗k,α(zk,α−zk−1,α)−∆tH(z∗k,α,zk−1,α)

resulting in

〈zf | e
−tH |zi〉 =

∫
D[z∗k,α, zk,α]e−S(z∗k,α,zk,α)

S(z∗, z) =
∑

k

∆t

{∑
α

z∗k,α

(
zk,α − zk−1,α

∆t

)
+ H(z∗k,α, zk−1,α)

}
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Coherent states for fermions

Fermions are represented by anti-commuting creation and annihilation operators c†α and cα → need to
introduce anti-commuting Grassmann variables ξ such that

ĉα |ξ〉 = ξα |ξ〉 ĉαĉβ |ξ〉 = ξαξβ |ξ〉 = −ξβξα |ξ〉 = −ĉβ ĉα |ξ〉

Since ξ2
α = 0 (Pauli principle) the only functions allowed are monomials.

The rules for integration over a Grassmann variable ξ and ξ∗ are∫
dξα =

∫
dξ∗α = 0,

∫
dξαξα =

∫
dξ∗αξ

∗
α = 1

A fermion coherent state is defined by

|ξ〉 ≡ e−
∑
α ξαc†α |0〉

with similar properties to bosons. The path integral have similar form to that for bosons with some minus signs
that distinguish between bosons and fermions.
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Integration over fermions

For numerical evaluation we can not have the path integrals in terms of Grassmann variables. Fortunately for
normalizable field theories we can integrate analytically over the fermionic degrees of freedom
Recall Gaussian integral

∫ ∏
i

dz∗i dzi

2iπ
e−z∗i Hij zj +J∗i zi +z∗i Ji = [detH]−1 e

J∗i H−1
ij Jj

An analogous result is obtained for Grassmann “Gaussian”: For one pair of Grassmann variables we have∫
dξ∗dξ e−ξ

∗aξ =

∫
dξ∗dξ(1− ξ∗aξ) = a

This generalizes to ∫ ∏
i

dξ∗i dξi e−ξ
∗
i Hijξj +η∗i ξi +ξ∗i ηi = [detH] e

η∗i H−1
ij ηj

i.e. the only difference is that detH appears in the numerator→ accounts for the minus sign of fermion loops.
If our action is of the form S(ξ∗, ξ, φ) = ξ∗i M(φ)ijξj + SB(φ) then

∫
dξ∗dξdφ eξ

∗
i M(φ)ijξj +SB (φ)

=

∫
dφ detM(φ) eSB (φ)

i.e. Seff(φ) = ln detM(φ) + SB(φ)
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Fermion propagators
Consider the time ordered product of field creation and annihilation operators at space-time points j = (xj , tj )
and i = (xi , ti ) respectively:

〈T̂ψi ψ̄j〉 = TrT̂ψi ψ̄j e−ψ̄M(φ)ψ+SB (φ) =

∫
D[φ]D[ξ̄ξ]ξi ξ̄j e−ξ̄M(φ)ξ+SB (φ) =

∫
D[φ] M−1

ij (φ) eSeff(φ)

In general for n pairs of creation and annihilation operators∫
D(ξ∗, ξ) ξi1 · · · ξinξ

∗
jn · · · ξj1 e−ξ

∗Mξ

=
δ2n

δη∗i1
· · · δη∗inδηjn · · · δηj1

∫
D(ξ∗, ξ) e−ξ

∗
i Mijξj +η∗i ξi +ξ∗i ηi |η=η∗=0

=
δ2n

δη∗i1
· · · δη∗inδjn · · · δηj1

detM e
η∗i M−1

ij ηj |η=η∗=0

=
∑

P

(−1)P M−1
iPn jn
· · ·M−1

iP1
j1

eln detM

where P denotes a permutation of the indices. This is nothing else but Wick’s theorem.
=⇒ fermions can be integrated out and we are left only with an effective action with the bosonic degrees of
freedom.
Boundary conditions:

Tre−tH =

∫
dz∗0 dz0e−z∗0 z0 〈±z0| e−tH |z0〉 =

∫
dz∗0 dz0e−z∗0 z0

∫
dD[z∗, z] e−S(z∗,z)

where the plus is for bosons and minus for fermions and
S(z∗, z) = ±z∗0 (±z0 − zN−1) + H0.N−1 + z∗N−1(zN−1 − zN−2) + HN−1,N−2 + · · · + z∗1 (z1 − z0)H1,0.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD DESY Summer School, 12/8/2019 25 / 34



QCD on the lattice

a 

Uµ(n)=e iaAµ(n)  
ψ(n) 

ν 
µ 

L 

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 per-
formed the first numerical simulation

Discretization of space-time with lattice spacing a and implement

gauge invariance
I quark fields ψ(x) and ψ̄(x) on lattice sites
I Introduce parallel transporter connecting point x and x + aµ̂:

Uµ(x) = eiaAµ(x) i.e. gauge field Uµ(x) is defined on links

Finite a provides an ultraviolet cutoff at π/a→ non-perturbative
regularization; Finite L→ discrete momenta in units of 2π/L if
periodic b.c.

Construct an appropriate action S and rotate into imaginary time:
S = SG + SF where SF =

∑
x ψ̄(x)Dψ(x) i.e. quadratic in the

fermions
−→ can be integrated out

Path integral over gauge fields:
Z ∼

∫
DUµ(x)

∏
f det(Df [U]) e−SG [U]

→ Monte Carlo simulation to produce a representative ensemble of
{Uµ(x)} using the largest supercomputers→
Observables: 〈O〉 =

∑
{Uµ} O(D−1,Uµ)
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QCD on the lattice

a 

Uµ(n)=e iaAµ(n)  
ψ(n) 

ν 
µ 

L 

Lattice QCD: K. Wilson, 1974 provided the formulation; M. Creutz, 1980 per-
formed the first numerical simulation

Discretization of space-time with lattice spacing a and implement
gauge invariance

Finite a provides an ultraviolet cutoff at π/a→ non-perturbative
regularization; Finite L→ discrete momenta in units of 2π/L if
periodic b.c.

Path integral over gauge fields:
Z ∼

∫
DUµ(x)

∏
f det(Df [U]) e−SG [U]

→ Monte Carlo simulation to produce a representative ensemble of
{Uµ(x)} using the largest supercomputers→
Observables: 〈O〉 =

∑
{Uµ} O(D−1,Uµ)

JUWELS (Jülich Wizard for European Leadership Science): 12 Pflop/s, one of the biggest in Europe
EU to build two exascale machines in the next 3 years
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Hadron mass
First goal: reproduce the low-lying masses

Use Euclidean correlation functions:

G(~q, ts) =
∑
~xs

e−i~xs·~q 〈J(~xs, ts)J†(0)〉

=
∑

n=0,··· ,∞

Ane−En(~q)ts ts→∞−→ A0e−E0(~q)ts

Interpolating field with the quantum numbers of π+: J(x) = d̄(x)γ5u(x)

Large Euclidean time evolution gives ground
state for given quantum numbers =⇒ enables
determination of low-lying hadron properties

aEeff(~q, ts) = ln
[
G(~q, ts)/G(~q, ts + a)

]
= aE0(~q) + excited states

→ aE0(~q)
~q=0→ am

0 1 2 3 4 5
t [fm]

0.10

0.15

0.20

0.25

0.30

m
ef

f [
G

eV
]

Nf = 2 + 1 + 1 TM fermions at mπ = 210 MeV
Nf = 2 TM plus clover fermions at physical pion mass
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Hadron mass

First goal: reproduce the low-lying masses
Use Euclidean correlation functions:

G(~q, ts) =
∑
~xs

e−i~xs·~q 〈J(~xs, ts)J†(0)〉

=
∑

n=0,··· ,∞

Ane−En(~q)ts ts→∞−→ A0e−E0(~q)ts

Interpolating field with the quantum numbers of p: J(x) = εabc
(

ua>(x)Cγ5db(x)
)

uc(x)

Large Euclidean time evolution gives ground
state for given quantum numbers =⇒ enables
determination of low-lying hadron properties

aEeff(~q, ts) = ln
[
G(~q, ts)/G(~q, ts + a)

]
= aE0(~q) + excited states

→ aE0(~q)
~q=0→ am 0.4

0.8

1.2

1.6

2.0

 0  4  8  12  16  20

m
ef
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Ω

Nf = 2 TM plus clover fermions at physical pion mass

Noise to signal increases with ts :∼ e(mh−
3
2 mπ )ts
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Hyperons and Charmed baryons
SU(4) representations:

Spectrum using Nf = 2 simulations with physical pion mass
We still need continuum extrapolation
Volume dependence
But NO chiral extrapolation, which was the biggest systematic error
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)

BMW Nf = 2 + 1
PACS-CS Nf = 2 + 1

QCDSF-UKQCD Nf = 2 + 1
ETMC Nf = 2 + 1 + 1

ETMC Nf = 2 (this work)

C.A., Ch. Kallidonis arXiv:1704.02647
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Nucleon form factors

Evaluation of three-point functions:
Gµν(Γ,~q, ts, tins) =

∑
~xs,~xins

ei~xins·~q Γβα 〈Jα(~xs, ts)Oµν(~xins, tins)Jβ(~x0, t0)〉

q = p
′ − p

(xins, tins)

(x0, t0)(x
s
, t

s
)

OΓ

Form ratio by dividing the three-point correlator by an appropriate combination
of two-point functions:

connected contribution

R(ts, tins, t0)
(tins−t0)∆�1
−−−−−−−−→
(ts−tins)∆�1

M[1 + . . . e−∆(p)(tins−t0) + . . . e−∆(p′)(ts−tins)]

M the desired matrix element

ts, tins, t0 the sink, insertion and source time-slices

∆(p) the energy gap with the first excited state

Connect lattice results to measurements:
OMS(µ) = Z (µ, a)Olatt(a)
=⇒ evaluate Z (µ, a) non-perturbatively

8 6 4 2 0 2 4 6 8
(tins ts /2)/a

0.0

0.1

0.2

0.3

0.4

0.5

x
u

d

ts /a =8
ts /a =12
ts /a =16
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Proton radius puzzle

〈N(p′, s′)|jµ(0)|N(p, s)〉 = ūN (p′, s′)
[
γµF1(q2) + iσµν qν

2m F2(q2)
]

uN (p, s)

Proton radius extracted from muonic hydrogen is
7.7 σ different from the one extracted from
electron scattering, R. Pohl et al., Nature 466 (2010) 213

Muonic measurement is ten times more accurate
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The proton spin puzzle
1987: the European Muon Collaboration showed that only a fraction of the proton spin is carried
by the quarks =⇒ ETMC has now provided the solution

Recent results from lattice QCD at the physical point

C.A. et al., arXiv:1706.02973
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Conclusions

Lattice QCD is a successful framework for non-perturbative calculations→ simulations of the full theory
at the physical point are now possible

After getting agreement with experiment it enables predictions of new quantities

New ideas and techniques are needed for the study of e.g. resonances, multi-quark states, decays, etc

Can be used to study models beyond the SM
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As simulations at the physical pion mass and more computer resources are becoming available we expect
many physical results on key hadron observables that will impact both experiments and phenomenology

New ideas and approaches are needed and welcome

Please join and contribute
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