Physics at the LHC experiments

Summer School Lectures
DESY Zeuthen, August 25th-26th
2008

Marcello Barisonzi
Slides by Christiane Risler
Outline of the lecture

1. **Introduction to hadron colliders and pp physics**
 Overview of collider physics, LHC

2. **standard model physics at LHC** (and Tevatron)
 QCD Jets, top and W/Z physics and precision measurements

3. **searches**
 for the Higgs boson and new physics beyond the standard model

4. **ATLAS and CMS**
 how detectors work
Outline of part 1

1. The standard model of particle physics
2. Hadron Colliders: LHC
3. Some more details on pp physics and what to expect at LHC
4. LHC experiments ATLAS and CMS
1. The standard model of particle physics: short introduction, its success and its limitations
Building blocks of matter

quarks and leptons in three generations
The Standard Model of Particle Physics

building blocks of matter

quarks and leptons in three generations

and forces

electromagnetic, weak
strong force
mediated by exchange of gauge bosons

- photon γ $m=0$
- gluon g $m=0$
- W,Z-boson $m_W = 80.4$, $m_Z = 91$ GeV
Origin of mass in the standard model
so far particles massless

• electron and top mass
 \(m_e = 0.5 \text{ MeV} \) \(m_t = 171.2 \text{ GeV} \)

• gauge Boson masses
 \(\gamma, g \) \(m = 0 \)
 \(W, Z \) \(m_W = 80.4, m_Z = 91 \text{ GeV} \)

Higgs mechanism: (Peter Higgs, 1964)
 masses of W and Z boson
 quark and lepton masses
 via coupling to the Higgs boson

mass of Higgs boson = free parameter
 constraints
 114.4 GeV (exp.) < \(m_H \) < \(~1 \text{ TeV} \) (theory)
Success of the Standard Model

electro weak theory
Glashow, Salam, Weinberg, 1974
SU(2) × U(1)
Higgs mechanism
prediction of neutral weak currents and massive weak gauge bosons

experimental confirmation:
Gargamelle and UA1, UA2

charm quark, top (heavier and found much later...)

theory of strong interactions QCD SU(3)\(_C\)
also formulated in 1974
describes data over large energy range

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Pull</th>
<th>Pull</th>
<th>Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_\gamma) [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>(\Gamma_\gamma) [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>-.42</td>
<td></td>
</tr>
<tr>
<td>(\sigma_{\text{hadr}}) [nb]</td>
<td>41.540 ± 0.037</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>(R_\gamma)</td>
<td>20.767 ± 0.025</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>(A_\beta^{0,1})</td>
<td>0.01714 ± 0.00095</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>(A_\beta)</td>
<td>0.1498 ± 0.0048</td>
<td>.38</td>
<td></td>
</tr>
<tr>
<td>(A_\gamma)</td>
<td>0.1439 ± 0.0042</td>
<td>-.97</td>
<td></td>
</tr>
<tr>
<td>(\sin^2\theta_{\text{eff}})</td>
<td>0.2321 ± 0.0010</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>(m_W) [GeV]</td>
<td>80.427 ± 0.046</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>(R_\beta)</td>
<td>0.21653 ± 0.00069</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>(R_\gamma)</td>
<td>0.1709 ± 0.0034</td>
<td>-.40</td>
<td></td>
</tr>
<tr>
<td>(A_\beta^{0,1})</td>
<td>0.0990 ± 0.0020</td>
<td>-2.38</td>
<td></td>
</tr>
<tr>
<td>(A_\beta^{0,1,0})</td>
<td>0.0689 ± 0.0035</td>
<td>-1.51</td>
<td></td>
</tr>
<tr>
<td>(A_\beta)</td>
<td>0.922 ± 0.023</td>
<td>-.56</td>
<td></td>
</tr>
<tr>
<td>(A_\gamma)</td>
<td>0.631 ± 0.028</td>
<td>-1.43</td>
<td></td>
</tr>
<tr>
<td>(\sin^2\theta_{\text{eff}})</td>
<td>0.23099 ± 0.00026</td>
<td>-1.61</td>
<td></td>
</tr>
<tr>
<td>(\sin^2\theta_W)</td>
<td>0.2255 ± 0.0021</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>(m_W) [GeV]</td>
<td>80.452 ± 0.062</td>
<td>.81</td>
<td></td>
</tr>
<tr>
<td>(m_t) [GeV]</td>
<td>174.3 ± 5.1</td>
<td>-.01</td>
<td></td>
</tr>
<tr>
<td>(\Delta \alpha_\text{had}(m_\gamma))</td>
<td>0.02804 ± 0.00065</td>
<td>-.29</td>
<td></td>
</tr>
</tbody>
</table>

e+e- colliders (LEP, SLC), Tevatron (pp), HERA(ep),... energy range up to ~100 GeV with high precision SM consistent with all experimental data!
However, ...
The Standard Model: Open Questions

- **Origin of mass in the standard model?**
 does the Higgs boson exist, what is its mass?

- **Unification of forces?**
Unification of Forces?

- unification of electric and magnetic forces: Maxwell
- standard model unifies electro-magnetic and weak forces

Can electroweak and strong force (and even gravity) be unified at some higher scale = grand unification scale GUT?

All forces described by one unified theory with SM as low energy approximation
more symmetry (broken), more fundamental theory...

Possible in supersymmetric theories:
The Standard Model: Open Questions

- **Origin of mass in the standard model?**
 does the Higgs boson exist, what is its mass?

- **Unification of forces?**
 More fundamental theory where forces are unified at higher scale?
The Standard Model: Open Questions

- **Origin of mass in the standard model?**
 does the Higgs boson exist, what is its mass?

- **Unification of forces?**
 More fundamental theory where forces are unified at higher scale?

- **Hierarchy Problem?**
 Why is the electro weak scale ~ 100 GeV $<<$ Planck scale 10^{19}?
 In other words: Why is gravity so weak?

- **Finetuning Problem**
 Radiative corrections to the Higgs mass quadratically diverge,
 cancellation possible only with extreme fine tuning of parameters

- **Dark Matter?**
Dark Matter

Does not emit or reflect electromagnetic radiation, undetected

Where do we know it exists?

- motion of galaxies
- gravitational lensing
- cluster formation in cosmic microwave background

E.g. SUSY could provide candidates for dark matter

![Cosmic microwave background](image)
The Standard Model: Open Questions

- **Origin of mass in the standard model?**
 does the Higgs boson exist, what is its mass?

- **Unification of forces?**
 more fundamental theory where forces are unified at higher scale?

- **Hierarchy Problem?**
 why is the electro weak scale ~ 100 GeV $<<$ Planck scale 10^{19}?
 In other words: Why is gravity so weak?

- **Finetuning Problem**
 radiative corrections to the Higgs mass quadratically diverge
cancellation possible only with extreme fine tuning of parameters

- **Dark Matter?**
 what is it?

- **Flavor or generation problem**
 why three generations?
 origin of CP violation? why no strong CP violation
 neutrino masses and mixing
Possible Answers from LHC

How could LHC give answers to these questions?

- search for the Higgs Boson
- Test of standard model at highest energies – find deviations?
- search for supersymmetric particles?
 elegant, unifies forces, helps with fine tuning and hierarchy problem, provides dark matter candidate
- ..and of course any other physics beyond the standard model

new machine to find new physics:
LHC - answer on new physics at few TeV scale!
2. Hadron colliders
LHC @ CERN
Why hadrons?

e^+e^-

Collide compound objects, hadrons in initial state: hadron collisions more complex!

pp

7 TeV 7 TeV
Why hadrons?

e^+e^-

LEP event (higgs candidate 4 jet event)

\[e^+e^- \rightarrow ZH \rightarrow bb \, qq \]

- no hadrons in initial state
- “clean” environment
- \(\sqrt{s} = 2E_{\text{beam}} \)

pp

simulated Higgs -> \(\mu\mu\mu\mu \) event in CMS

- hadron collisions more complex...
- \(\sqrt{s} \) of hard interaction of constituents \(\neq 2E_{\text{beam}} \)
- overlap with soft hadronic interactions
Advantage of hadron beams

wanted: highest energies
but losses due to synchrotron radiation
electrodynamics: accelerated charges radiate
ring accelerators: x-rays via bremsstrahlung

Energy loss per term: \[-\Delta E \approx \frac{4\pi e^2}{3R} \left(\frac{E}{mc^2} \right)^4\]

how to reduce \(\Delta E\)?
reduce \(E\)? no!
increase \(R\)? done!
increase \(m\)!

Ratio of \(e/p\):
\[\frac{\Delta E(e)}{\Delta E(p)} = \left(\frac{m_p}{m_e} \right)^4 \approx 10^{13}\]

future
- pp ring accelerator LHC
- \(e^+e^-\) linear accelerator ILC (R&D, planning phase)
energy of electron and hadron colliders

History of \sqrt{s}

higher center of mass energies at hadron colliders

constituent cms!
Hadron Colliders and Detectors

- Tevatron (CDF, DO)
 - 1987-2007
 - 2 TeV

- SPS (UA1, UA2...)
 - 1981-1990
 - 0.6 TeV

- CERN

- LHC (Atlas, CMS, LHC-B)
 - 2007-2020
 - 14 TeV

Marcello Barisonzi marcello.barisonzi@desy.de LHC experiments August 25-26 2008 21
LHC

From LEP to LHC

Superconducting magnets

Compact Muon Solenoid

ATLAS

PS

SPS

ALICE

LHC-B

27 Km

CMS
proton-proton accelerator
in the LEP tunnel = 27 km
beam energies 7 TeV
four **experiments**: ATLAS, CMS (pp physics)
LHC-B (physics of b quarks in pp)
ALICE (Pb-Pb collisions)
Superconducting dipole magnets
1232 magnets, 15 m long
magnetic field 8.3 Tesla
temperature 1.9 K

Accelerator units
8 superconducting structures
gradient 5 MV/m
some LHC parameters

SC magnets 1235, 15m, 8.33 Tesla
beam energy 7 TeV

bunches/beam 2835
particles/bunch 1.15 \cdot 10^{11}
bunch spacing 25 ns

Lumi initial phase (1-2yr) 10^{33} cm$^{-2}$ s$^{-1}$
Lumi design 10^{34} cm$^{-2}$ s$^{-1}$

1 year \sim 10^{7} s running
integrated Lumi $10 - 100$ fb$^{-1}$/ year

for comparison:
design Tevatron Run II (2001 – now):
 \[L = 2 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \]
LHC design 50 x larger!
Start up scenario

now : beam commissioning in part of the ring, seen by LHCb!

Sep 2008: Beams in whole ring

Oct 2008: first interactions at 10 TeV
used for calibration and commissioning of experiments
October 21st is the official inauguration

Dec 2008: End of first run

2009 : Commissioning for 14 TeV
Beam halo at LHCb
Proton antiproton collider
exp.: CDF and D0

1992 – 1996 RunI
\(\sqrt{s} = 1.8 \) TeV
L = 125 pb\(^{-1}\)

1996 – 2001 upgrade of accelerator and detectors

since 2001 RunII
\(\sqrt{s} = 1.96 \) TeV

2001 - 2006
Run IIa L = 1.2 fb\(^{-1}\)

2006 – 2009
Run IIb L = 5-8 fb\(^{-1}\)
3. physics at hadron colliders
Definition of variables: p_T and η

- **transverse momentum p_T:** momentum perpendicular to the beam axis

- **pseudorapidity η:**

 rapidity

 $$y = \frac{1}{2} \ln \frac{E + p_L}{E - P_L}$$

 massless particles (mass unknown) use **pseudorapidity** instead:

 $$\eta = -\ln \tan \theta / 2$$

 $\Delta \eta = 1$

 1 unit in pseudorapidity

 same number of charged particles

 $<n> \sim 7$ (for min bias events)
pp collisions

collide complex objects

interaction of partons in the proton
quarks and gluons (a,b)

hard subprocess
\[a+b \rightarrow c+d \]

final state:
hadrons and jets
proton remnants X
pp colliders: QCD machines

Quarks and gluons interact strongly

what was special about QCD?

- high \(Q^2 \)
- long distance interactions
- low \(\alpha_s \)
- high \(\alpha_s \)

Feynman diagrams for qq, qg, gg interactions:

- Perturbative QCD
 - \(\text{expansion in orders in } \alpha_S \)

- Asymptotic confinement freedom

Running coupling

Asymptotic freedom

2004 Nobel Prize in Physics

David J. Gross

H. David Politzer

Frank Wilczek

For the discovery of asymptotic freedom in the theory of strong interactions
pp collisions

long distance interactions
- α_s large
- inside the proton
- formation of hadrons from partons
- pert. QCD not applicable

short distance interactions
- high momentum transfer and small α_s
 - **hard subprocess**
 - outgoing (hard) partons
 - parton shower
 - \rightarrow jets of partons
 - partons form hadrons
 - \rightarrow jets of hadrons
pp collisions

long distance interactions
- \(\alpha_s \) large
- inside the proton
- formation of hadrons from partons
- pert. QCD not applicable

short distance interactions
- high momentum transfer
- and small \(\alpha_s \)
- **hard subprocess**

outgoing (hard) partons
parton shower
--> jets of partons

partons form hadrons
--> jets of hadrons

pdfs

fragmentation
Hard subprocess

Proton momenta \(p_A = p_B = p = 7 \text{TeV} \)

momentum of partons in proton

\[x_a \cdot p \quad x_b \cdot p \]

\(x = \) longitudinal momentum fraction

center of mass energy

of pp collision: \(\sqrt{s} = 2E_{\text{beam}} \)

of hard subprocess:

\[\hat{s} = x_1 x_2 2p_A p_B = x_1 x_2 s \]

\[\sqrt{\hat{s}} = <x> \sqrt{s} \]

which \(x \) needed to produce masses \(M \)?

<table>
<thead>
<tr>
<th>(M)</th>
<th>(<x>)</th>
<th>LHC</th>
<th>Tevatron</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 GeV</td>
<td>(\sim 0.007)</td>
<td>(\sim 0.05)</td>
<td></td>
</tr>
<tr>
<td>5 TeV</td>
<td>(\sim 0.36)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

what is probability to find parton with momentum fraction \(x \) in the proton?
What is probability to find parton with momentum fraction x in the proton?

Probe structure of the proton deep inelastic ep scattering

HERA ep collider DESY, HH e 27.5 GeV p 920 GeV

QCD: structure depends on x, Q^2 probability is given by pdfs
Parton density functions

measure structure functions $F_2(x,Q^2)$...

total ep cross section $\rightarrow F_2$

$F_2(x) = \frac{F_2(x)}{F_2(0)}$

...extract pdfs for valence (up, down), sea quarks and gluons

fit of parameterised pdfs to F_2 data

$= test$ of QCD, extract pdfs

$Q^2 = 10 \text{ GeV}^2$
Cross section calculation

\[\sigma = \sum_{a,b} dx_a dx_b f_a(x, Q^2) f_b(x, Q^2) \hat{\sigma}_{ab}(x_a, x_b) \]

- sum over initial partons \(a, b\)
- parton density functions \(f_{a,b}(x, Q^2)\)
 - non-perturbative, universal
- partonic hard scattering cross section \(\hat{\sigma}_{ab}(x_a, x_b)\)
 - calculable in pert. QCD

Long distance parton (pdfs) and short distance interaction (hard subprocess) factorise!
from partons to jets: fragmentation

at large momentum transfer: quarks act as free (asymptotic freedom) however: **no free quarks observed**, but jets of color less hadrons before QCD: puzzling ...

String-model

hard parton from subprocess creates **parton shower** =

- gluon radiation
- quark-antiquark pairs (pert)!

At each splitting: E smaller --> α_s increased

non perturbative process: hadronisation
e.g. Lund String model

jets of hadrons
formation of jets

non-perturbative process

string-model

jet (to be defined)
Minimum-bias events

Inelastic pp scattering cross section (70 mb = very large) dominated by

long distance interaction between pp with low momentum transfer
 * final state very little pT, very large pL
 * pt of charged tracks ~ 500 MeV
 * # charged particles dN/dη ~ 7

so-called **minimum-bias events**

why this name? Trigger on... almost nothing = minimum bias

why interesting?

Underlying event = everything but what I'm interested in
 e.g. everything except the hard subprocess

min.-bias events = part of underlying event, Lumi dependent pile-up

all interesting events come along with underlying min-bias events!
Pile up of min-bias events

2835x2835 proton bunches
separation 7.5 m (25 ns)
10^{11} protons/bunch

bunch crossing rate: 40 MHz
Lumi (design): 10^{34} cm$^{-2}$ s$^{-1}$

$\sim 10^9$ pp collisions / s and
$10^9 / 40 \cdot 10^6$

~ 25 pp interactions/bc = pile up!

Simulated event in CMS

$h \rightarrow \mu\mu\mu\mu$
Pile up of min-bias events

2835x2835 proton bunches
separation 7.5 m (25 ns)
10^{11} protons/bunch

bunch crossing rate: 40 MHz
Lumi (design): 10^{34} cm$^{-2}$ s$^{-1}$

$\sim 10^9$ pp collisionen / s and
$10^9 / 40 \cdot 10^6$

~ 25 pp interactions/bc = pile up!

Simulated event in CMS
$h \rightarrow \mu\mu\mu\mu$
with min-bias pile up events
Cross sections and rates

Rates for design $L=10^{34}$ cm$^{-2}$ s$^{-1}$

inelastic pp interactions : 10^9 Hz
(total total cross section)

- $b\bar{b}$ pairs $5 \cdot 10^6$ Hz
- $t\bar{t}$ pairs 8 Hz
- $W \to e\nu$ 150 Hz
- $Z \to ee$ 15 Hz
- Higgs (150 GeV) 0.2 Hz
- gluinos, squarks (1 TeV) 0.03 Hz

most cross sections 7-9 or more orders smaller than total cross section!
Typical signatures

The signatures we look for are characterised by...

- Leptons and photons at high p_T
 - initial state pp: no leptons, no p_T
 - high p_T leptons in final state:
 - decay of heavy particles
 - signature of interesting physics

- b quarks, tau leptons from decays
 - long lived particles, decay vertex reconstruction

- missing Energy $\rightarrow E_{\text{miss}}$
 - Higgs, W decays involve neutrinos
 - many SUSY and other BSM scenarios

 - missing Energy
 - measure missing transverse E

 why not E_{L} miss?
• **Hadron colliders** play an important role in particle physics discovery but also precision measurements

• **LHC will open up TeV energy range**
 new particles with 3-5 TeV mass could be produced and hopefully detected

• **typical signatures** include high pT objects, leptons and photons and often missing (transverse) energy

• **challenges at LHC**
 huge interaction rates and large QCD background pile up

requires detectors and electronics
 fast, high granularity, radiation hard
 ... let's have a look at them!