New Results on Kaon Decays from KTeV and NA48

Rainer Wanke

Institut für Physik, Universität Mainz

XXIIIrd Conference on Physics in Collision

Zeuthen, June 27, 2003

Overview

- Direct CP Violation
 - Results on $\operatorname{Re}(\epsilon'/\epsilon)$
- Rare K_L Decays
 - Measurement of $K_{\rm L} \rightarrow e^+ e^- e^+ e^- / \mu^+ \mu^- e^+ e^-$
 - Search for direct CP violation in $K_{\rm L} \rightarrow \pi^0 e^+ e^-$
- Rare K_s Decays
 - First observation of $K_{\rm S} \rightarrow \pi^0 e^+ e^-$
 - Search for CP violation in $K_{\rm S} \rightarrow 3\pi^0$
 - ChPT Tests from $K_{\rm S} \rightarrow \gamma \gamma$, $K_{\rm S} \rightarrow \pi^0 \gamma \gamma$
- K[±] Decays
 - Current NA48 program
- Summary

The Experiments

NA48 Beam-Line

- Simultaneous beams of K_L and K_S.
- Regenerator before the decay volume
 - ($\rightarrow K_{S}$ beam).
- K_L, K_S beans divergent
 - $\rightarrow K_{S}$ identification by extrapolated line-of-flight

Detectors

MUON COUNTERS

-BACK-ANTI

HADRON-ANTI

-TRD'S (E799)

KTeV:

Direct CP Violation Measurement of $\operatorname{Re}(\epsilon'/\epsilon)$

K Mesons

 $\begin{array}{l} \mathsf{CP} |K^{0}\rangle \,=\, |\overline{K^{0}}\rangle \\ \mathsf{CP} |\overline{K^{0}}\rangle \,=\, |K^{0}\rangle \end{array} \right\} \implies \left\{ \begin{array}{l} |K_{1}\rangle \,=\, \frac{1}{\sqrt{2}} \left(\, |K^{0}\rangle + |\overline{K^{0}}\rangle\,\right) \quad \mathsf{CP} = +1 \\ |K_{2}\rangle \,=\, \frac{1}{\sqrt{2}} \left(\, |K^{0}\rangle - |\overline{K^{0}}\rangle\,\right) \quad \mathsf{CP} = -1 \end{array} \right. \\ \blacksquare \, \mathsf{CP} |\pi\pi\rangle = +1 \implies \mathsf{Decay} \, \mathbf{K_{2}} \to \pi\pi \, \begin{array}{l} \mathsf{CP-forbidden} \\ \tau(K_{\mathsf{L}}) \,\sim\, 600 \times \tau(K_{\mathsf{S}}) \end{array} \right. \end{array}$

Indirect CP Violation: (Christenson, Cronin, Fitch, Turlay, 1964) Mass/Decay eigenstates $|K_L\rangle$, $|K_S\rangle$ contain small admixture of $|K_1\rangle$ or $|K_2\rangle$, resp.:

 $\begin{array}{ll} |K_{\mathsf{L}}\rangle & \propto & |K_{2}\rangle + \epsilon |K_{1}\rangle \\ |K_{\mathsf{S}}\rangle & \propto & |K_{1}\rangle + \epsilon |K_{2}\rangle \end{array} \qquad |\epsilon| = (2.28 \pm 0.02) \times 10^{-3} \end{array}$

 $\implies K_L \rightarrow \pi \pi$ indirectly via ϵ contribution of K_1

Standard model:

Complex phase in CKM matrix responsible for CP violation

 $K^0\overline{K^0}$ oscillations via box diagrams.

Other possibility:

Transistions $K^0 \rightarrow \overline{K^0}$ and $\overline{K^0} \rightarrow K^0$ via "super weak" interaction.

- p.9/4

Direct CP violation:

 $K_2 \rightarrow \pi \pi$ directly (not via K_1 admixture)

 $\implies \Gamma(K^0 \to \pi\pi) \neq \Gamma(\overline{K^0} \to \pi\pi)$

Strength: \rightarrow Parameter $\epsilon' (\sim \mathcal{O}(10^{-6}))$

Standard model: Decay via penguin diagrams.

 \implies Different for $K_L \rightarrow \pi^+ \pi^-$ und $K_L \rightarrow \pi^0 \pi^0!$

- p.10/4

Measurement of ϵ'

Amplitude ratios for
$$K_{L,S} \to \pi^+ \pi^- / \pi^0 \pi^0$$
: $(\epsilon' \ll \epsilon)$

$$\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{A(K_{\mathsf{L}} \to \pi^{+}\pi^{-})}{A(K_{\mathsf{S}} \to \pi^{+}\pi^{-})} \simeq \epsilon + \epsilon'$$

$$\eta_{00} = |\eta_{00}| e^{i\phi_{00}} = \frac{A(K_{\mathsf{L}} \to \pi^{0}\pi^{0})}{A(K_{\mathsf{S}} \to \pi^{0}\pi^{0})} \simeq \epsilon - 2\epsilon'$$

Measurement of ϵ' : Build **double ratio**

$$R \equiv \frac{\Gamma(K_{\mathsf{L}} \to \pi^{0} \pi^{0})}{\Gamma(K_{\mathsf{S}} \to \pi^{0} \pi^{0})} / \frac{\Gamma(K_{\mathsf{L}} \to \pi^{+} \pi^{-})}{\Gamma(K_{\mathsf{S}} \to \pi^{+} \pi^{-})} \approx 1 - 6 \times \operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right)$$

ϵ'/ϵ : Data Analysis

Analysis principle: simple counting experiment

Statistically limited by $K_{\rm L} \rightarrow \pi^0 \pi^0$ decays.

<u>NA48</u> (total): 5×10^6 $K_1 \rightarrow \pi^0 \pi^0$ KTeV (96/97): 3.4×10^6 $K_1 \rightarrow \pi^0 \pi^0$ (1999: again as much)

Systematic effects:

_ _ _

Corrections on "raw" double ratio R_{raw} :

- Trigger inefficiencies
- Reconstruction inefficiencies
- Detector acceptances
- **Background from** K_{e3} , $K_{\mu3}$, $K_{\rm I} \rightarrow 3\pi^0$
- Accidentally overlapping events

ϵ'/ϵ : Data Analysis

Main correction:

Detector acceptance is function of kaon lifetime $\implies K_{\rm S}$ and $K_{\rm L}$ have different acceptances.

NA48: Weighting

Weight $K_{\rm L}$ events with $\tau(K_{\rm S})$.

Acceptance differences only from beam geometry.

 $\Delta \operatorname{Re}(\epsilon'/\epsilon) \approx 3.7 \times 10^{-4}$

Loss of 70% of K_L statistics.

KTeV: Monte Carlo correction

- Full statistics can be used.
- Acceptance correction: $\Delta \text{Re}(\epsilon'/\epsilon) \approx 80 \times 10^{-4}$

ϵ'/ϵ : Systematics

Systematic uncertainties on $\operatorname{Re}(\epsilon'/\epsilon)$ [10⁻⁴]:

	NA48 (2001)	KTeV (96/97)
Trigger efficiency	± 0.6	± 0.6
$\pi^+\pi^-$ reconstruction	± 0.5	± 0.3
$\pi^0\pi^0$ reconstruction	± 0.9	± 1.5
Background	± 0.7	± 1.1
Accidental activity	± 0.6	—
K_{S} tagging	± 0.7	—
Acceptance	± 0.7	± 0.9
MC statistics	± 0.6	± 0.6
Fit procedure		± 0.3
Total	± 1.8	± 2.4

– p.14/4

ϵ'/ϵ : Results

$\operatorname{Re}(\epsilon'/\epsilon)$:

$(13.7\pm2.5_{\rm stat}\pm1.9$	$(\mathrm{syst}) imes 10^{-4}$	(published July 2002)
$(14.7\pm1.4_{\mathrm{stat}}\pm1.7)$	$(7_{ m syst}) imes 10^{-4}$	
$(20.7\pm1.5_{\mathrm{stat}}\pm2.4$	$(\mathrm{syst}) imes 10^{-4}$	(published Jan 2003)
${ m Re}(\epsilon'/\epsilon) = (16.6)$	\pm 1.6) $ imes$ 10 ⁻	-4
┝╼┤	16,6 ± 1,6	$\chi^2/d.o.f. = 6.3/3)$
⊢	7,4 ± 5,9	
•	23,0 ± 6,5	
⊢ •-1	14,7 ± 2,2	
) 10 20 30 Re (ε' / ε) [10 ⁻⁴]	20,7 ± 2,8	
	$(13.7 \pm 2.5_{\text{stat}} \pm 1.9)$ $(14.7 \pm 1.4_{\text{stat}} \pm 1.')$ $(20.7 \pm 1.5_{\text{stat}} \pm 2.4)$ $\mathbf{Re}(\epsilon'/\epsilon) = (16.6)$ $\mathbf{Re}(\epsilon'/\epsilon) = \mathbf{Re}(\epsilon'/\epsilon) = \mathbf{Re}(\epsilon'/\epsilon$	$(13.7 \pm 2.5_{\text{stat}} \pm 1.9_{\text{syst}}) \times 10^{-4}$ $(14.7 \pm 1.4_{\text{stat}} \pm 1.7_{\text{syst}}) \times 10^{-4}$ $(20.7 \pm 1.5_{\text{stat}} \pm 2.4_{\text{syst}}) \times 10^{-4}$ $\mathbf{Re}(\epsilon'/\epsilon) = (16.6 \pm 1.6) \times 10^{-4}$ $(16.6 \pm 1.6) \times 10^{-4}$

ϵ'/ϵ : Predictions

Theoretical predictions of ϵ'/ϵ notoriously difficult.

Rare K_L Decays

Main interests:

Further understanding and search for CP violation.

<u>KTeV:</u>

- Rare-Decay run periods for K_L decays.
- Low K_S statistics

<u>NA48:</u>

- K_L decays from ε' runs.
- Special K_S runs with high intensity.

1997	ε'/ε r	un	K _L +
1998	ɛ'/ɛ r	un	K _L +
1999	ε'/ε r K _L + I	un K _S	
2000	K _L only NO Spec	K _S Inte tromete	Higl ensit er
2001	ε'/ε r K _L + I	run K _S	H
2002	K _S Hig	h Intens	sity
2003	K [±] Hig	h Intens	sity

Interest in $K_{\rm L} \rightarrow 4$ leptons because of $K_{\rm L} \rightarrow \gamma^{\star} \gamma^{(\star)}$ form factor \implies Long distance contribution to $K_{\rm L} \rightarrow \mu^{+} \mu^{-}$.

Long distance contribution

■ $K_L \rightarrow e^+e^-e^+e^-$, $K_L \rightarrow \mu^+\mu^-e^+e^-$ best suited (but low branching fractions)

Short distance contribution

Also: Angle between $l^+l^- - l^+l^-$ decay planes gives CP value \implies Limit on CP violation in $K_L \rightarrow \gamma^* \gamma^{(*)}$ decays

KTeV: 97 and 99 data analyzed \rightarrow Full KTeV data set

 $Br(K_L \rightarrow e^+e^-e^+e^-) = (4.07 \pm 0.12_{\text{stat}} \pm 0.11_{\text{syst}} \pm 0.16_{\text{norm}}) \times 10^{-8}$

(KTeV, preliminary)

Form factor evaluation in progress.

NA48: Analysis in progress, but less statistical power.

S

Three amplitudes contribute to $K_L \rightarrow \pi^0 e^+ e^-$:

Direct CP violating:

Proportional to η or

 $\operatorname{Im}(\lambda_t) = \operatorname{Im}(V_{td}V_{ts}^{\star}) = \eta A^2 \lambda^5$

 $\implies Br(K_{\rm L} \rightarrow \pi^0 e^+ e^-)_{\rm direct \, CPV} \sim few \times 10^{-12}$

Indirect CP violating:

 $\implies \operatorname{Br}(\mathrm{K}_{\mathsf{L}} \to \pi^{0}\mathrm{e}^{+}\mathrm{e}^{-})_{\operatorname{indirect}}\operatorname{CPV} = |\epsilon|^{2} \frac{\tau_{\mathrm{L}}}{\tau_{\mathrm{S}}} \times \operatorname{Br}(\mathrm{K}_{\mathsf{S}} \to \pi^{0}\mathrm{e}^{+}\mathrm{e}^{-})$

... in 5 minutes ...

CP conserving:

Determined by $K_{L} \rightarrow \pi^{0} \gamma \gamma$. Measurements from KTeV and NA48:

 $Br(K_L \to \pi^0 e^+ e^-)_{CP \text{ cons.}} = (0.5 \pm 0.2) \times 10^{-12}$

W

KTeV: Search for $K_L \rightarrow \pi^0 e^+ e^-$

Same signature if $m_{\gamma\gamma} pprox m_{\pi^0}$

$\blacksquare Br \sim 6 \times 10^{-7}$

Suppressed with kinematic cuts on photon angles.

Physics in Collision, Zeuthen, June 27, 2003

Rare K_S Decays

NA48 Data Taking Periods for Rare *K_S* **Decays**

2000:

- No drift chambers.
- One half of run-period pure K_L beam
 - \implies Systematics for $\operatorname{Re}(\epsilon'/\epsilon)$
- One half of run-period high-intensity K_s target beam
 - $\implies \text{Rare neutral } K_{\text{S}} \text{ decays} \\ (K_{\text{S}} \rightarrow \gamma \gamma / \pi^0 \gamma \gamma / 3\pi^0)$

<u>2002:</u>

NA48/1 experiment

- Rare K_{S} decays (Total flux: $4 \times 10^{10} K_{S}$)
- Rare neutral hyperon deca (e.g. Ξ⁰ beta decay)

Theoretical prediction:

 $Br(K_{S} \to \pi^{0}e^{+}e^{-}) = (5 - 50) \times 10^{-9}$ (Ecker, Pich, De Rafael)

Connection to $K_{L} \rightarrow \pi^{0}e^{+}e^{-}$: Interference of direct and indirect CP violating amplitudes:

$$\begin{aligned} &\operatorname{Br}(\mathrm{K_L} \to \pi^0 \mathrm{e^+e^-})_{\mathrm{CP \ viol.}} \\ &= \left(15.3 \, a_s^2 \, \pm 6.8 \frac{\mathrm{Im}(\lambda_t)}{10^{-4}} \, |a_s| \, + 2.8 \left(\frac{\mathrm{Im}(\lambda_t)}{10^{-4}}\right)^2\right) \times 10^{-12} \end{aligned}$$

 $Br(K_S \to \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_s|^2 \implies \text{determines} |a_s|$

Experiment: $K_{\rm S} \rightarrow \pi^0 e^+ e^-$ so far not observed.

Best limit: $Br(K_S \rightarrow \pi^0 e^+ e^-) < 1.4 \times 10^{-7}$ (NA48, 2-day test run 1999)

Strategy:

Signal region $(2.5 \sigma_{m_K} \times 2.5 \sigma_{m_{\pi^0}})$

and control region $(6 \sigma_{m_K} \times 6 \sigma_{m_{\pi^0}})$ masked.

- Study backgrounds with data and MC simulation
 - \rightarrow fix analysis cuts
- Unmask signal region \implies Result

Backgrounds:

*K*_S decays: *K*_S → π⁰π⁰_{Dalitz} (+ conversions), *K*_S → π⁰_{Dalitz}π⁰_{Dalitz}, ... *K*_L decays: *K*_L → π⁺π⁻π⁰, *K*_L → e⁺e⁻γγ, ...
Ξ⁰ decays: Ξ⁰ → Λ(pπ⁻)π⁰, Ξ⁰ → Λ(pe⁻ν)π⁰, ...
Overlapping fragments of two decays

Main background from $K_{\rm S} \to \pi^0 \pi^0_{\rm Dalitz} \ (\pi^0_{\rm Dalitz} \to e^+ e^- \gamma)$:

- About $3 \times 10^8 K_S \to \pi^0 \pi^0_{\text{Dalitz}}$ decays in fiducial volume.
- Indistinguishable if one soft photon is lost, but $m_{ee} \leq m_{\pi^0}$:

Require conservatively: $m_{ee} > 165 \text{ MeV}$

⇒ No remaining background from $K_{\rm S} \rightarrow \pi^0 \pi_{\rm Dalitz}^0$ but: ~ 50% loss in acceptance

Backgrounds to $K_S \rightarrow \pi^0 e^+ e^-$ (II)

- p.30/4

Result on $K_S \rightarrow \pi^0 e^+ e^-$

Extrapolation to all m_{ee} :

 $\implies |a_s| = 1.08^{+0.26}_{-0.21}$

 $Br(K_L \rightarrow \pi^0 e^+ e^-)_{CP \text{ viol.}}$

Rainer Wanke, Universität Mainz

Matrix element from D'Ambrosio *et al* (JHEP 08 (1998) 004) with form factor = 1: $Br(K_S \rightarrow \pi^0 e^+ e^-)$ = $(5.8^{+2.8}_{-2.3 \text{ stat}} \pm 0.3_{\text{syst}} \pm 0.8_{\text{theo}}) \times 10^{-9}$ Br $(K_S \rightarrow \pi^0 e^+ e^-) = 5 \times 10^{-9} |a_s|^2$

With $Im(\lambda_t) = (1.3 \pm 0.1) \times 10^{-4}$ (global fit):

 $=(17.7 \pm 9.5) + 4.7) \times 10^{-12}$

Indirect CPV dominates $K_{\rm L} \rightarrow \pi^0 e^+ e^-!$

direct

interference

indirect

<u> $K_{S} \rightarrow 3\pi^{0}$ </u>: CP violating (complete analogy to $K_{L} \rightarrow \pi^{0}\pi^{0}$):

 $CP | \pi^{0} \pi^{0} \pi^{0} \rangle = - | \pi^{0} \pi^{0} \pi^{0} \rangle, \quad CP | K_{S} \rangle \approx CP | K_{1} \rangle = + | K_{1} \rangle$

Expectation (CPT invariance and some other assumptions):

$$\eta_{000} \equiv \frac{A(K_{\rm S} \to 3\pi^0)}{A(K_{\rm L} \to 3\pi^0)} = \epsilon + i \, \frac{\mathrm{Im}(A_1)}{\mathrm{Re}(A_1)}$$

 \implies Real part fixed by CPT, imaginary part sensitive to direct CP violation.

Previous measurements:

CPLEAR (1999):

SND, Novosibirsk (1999):

 $\begin{aligned} &\text{Re}(\eta_{000}) \ = \ 0.18 \ \pm \ 0.15 \\ &\text{Im}(\eta_{000}) \ = \ 0.15 \ \pm \ 0.20 \\ &\text{Br}(\text{K}_{\text{S}} \rightarrow 3\pi^0) < 1.4 \times 10^{-5} \end{aligned}$

Search for $K_s \rightarrow 3\pi^0$

Search for $K_s \rightarrow 3\pi^0$

Run period 2000: No drift chambers

 \implies Ideal environment for neutral decays!

Two different set-ups:

- Far-target $K_{\rm L}$ run for ϵ'/ϵ systematics.
- Near-target K_S run for K_S high-intensity.

Method:

- Use $3\pi^0$ events from near-target run for η_{000} .
- Normalize to $K_{\rm L} \rightarrow 3\pi^0$ from far-target run.
- Use Monte Carlo to correct for residual acceptance difference and Dalitz decays.

Fit of $\operatorname{Re}(\eta_{000})$ *,* $\operatorname{Im}(\eta_{000})$

Simultaneous fit in energy bins

 $\Rightarrow Free parameters:$ $Re(\eta_{000}), Im(\eta_{000}),$ normalizations

Fit result:

 $\begin{aligned} & \operatorname{Re}(\eta_{000}) = -0.026 \pm 0.010_{\mathsf{stat}} \\ & \operatorname{Im}(\eta_{000}) = -0.034 \pm 0.010_{\mathsf{stat}} \\ & \mathsf{correlation} \ \rho = 0.8 \end{aligned}$

Systematics:

eyetematiee:	$\operatorname{Re}(n_{000})$	$\operatorname{Im}(n_{000})$
	1000)	(1000)
Acceptance	± 0.003	± 0.008
Accidental activity	± 0.001	± 0.006
Energy scale	± 0.001	± 0.001
$K^0\overline{K^0}$ dilution	± 0.003	± 0.004
Fit	± 0.001	± 0.002
Total:	± 0.005	± 0.011

Search for $K_s \rightarrow 3\pi^0$

Preliminary NA48 result:

- $\operatorname{Re}(\eta_{000}) = -0.026 \pm 0.010_{\text{stat}} \pm 0.005_{\text{sys}}$
- $Im(\eta_{000}) = -0.034 \pm 0.010_{\text{stat}} \pm 0.011_{\text{sys}}$
- (CPLEAR: $\operatorname{Re}(\eta_{000}) = 0.18 \pm 0.14 \pm 0.06$ $\operatorname{Im}(\eta_{000}) = 0.15 \pm 0.20 \pm 0.03$)

If $\operatorname{Re}(\eta_{000}) = \operatorname{Re}(\epsilon)$ (CPT):

 $Im(\eta_{000}) = -0.012 \pm 0.007_{\text{stat}} \pm 0.011_{\text{sys}}$

Branching fraction: (preliminary)

 $Br(K_S \to 3\pi^0) < 1.4 \times 10^{-6}$ 90% CL

With $\operatorname{Re}(\eta_{000}) = \operatorname{Re}(\epsilon)$ (CPT):

Rainer Wanke, Universität Mainz

 $Br(K_S \to 3\pi^0) < 3.0 \times 10^{-7}$ 90% CL

(SND: $Br(K_S \to 3\pi^0) < 1.4 \times 10^{-5}$)

Bell-Steinberger relation:

Connects CPT violating phase δ with η parameters via unitarity:

 $(1 + i \tan \phi_{SW})[\operatorname{Re}(\epsilon) - i \operatorname{Im}(\delta)] = \sum_{\substack{\text{final} \\ \text{states}}} \alpha_f \qquad (\phi_{SW} = \arctan \frac{2\Delta m}{\Gamma_L - \Gamma_S})$

Largest contributions:

$lpha_f$	$10^3 imes {\sf Re}(lpha_f)$	$10^3 imes { m Im}(lpha_f)$
$\alpha_{+-} = \eta_{+-} \operatorname{Br}(K_{S} \to \pi^{+}\pi^{-})$	1.136 ± 0.013	1.071 ± 0.013
$\alpha_{00} = \eta_{00} \operatorname{Br}(\mathrm{K}_{S} \to \pi^0 \pi^0)$	0.517 ± 0.010	0.486 ± 0.010
$\alpha_{+-\gamma} = \eta_{+-\gamma} \operatorname{Br}(K_{S} \to \pi^+ \pi^- \gamma)$	0.003 ± 0.000	0.003 ± 0.000
$lpha_{l3}$	0.004 ± 0.000	0.003 ± 0.005
$\alpha_{+-0} = \frac{\tau_S}{\tau_L} \eta_{+-0}^{\star} \operatorname{Br}(\mathbf{K}_{L} \to \pi^+ \pi^- \pi^0)$	0.000 ± 0.002	0.000 ± 0.002
$\alpha_{000} = \frac{\tau_{\tilde{S}}}{\tau_L} \eta_{000}^{\star} \operatorname{Br}(\mathrm{K}_{L} \to 3\pi^0)$	0.029 ± 0.040	-0.026 ± 0.058

 $\begin{array}{ll} \blacksquare \underline{\mathsf{NA48:}} & \alpha_{000} = (-0.009 \pm 0.004) + i \ (0.012 \pm 0.005) \times 10^{-3} \\ \\ \Longrightarrow & \operatorname{Im}(\delta) = (-1.2 \pm 3.0) \times 10^{-5} & (\operatorname{was} (2.4 \pm 5.0) \times 10^{-5}) \\ \\ \implies & m_{K^0} - m_{\overline{K^0}} = (-1.7 \pm 4.2) \times 10^{-19} \ \mathrm{GeV} \end{array}$

Chiral Perturbation Theory (ChPT)

Low momentum transfers:

Lagrange function \mathcal{L}_{QCD} cannot be directly computed from QCD.

- \implies Introduce effective Lagrangian \mathcal{L}_{eff}
- \implies Expand in the meson momenta $(\mathcal{O}(p^2), \mathcal{O}(p^4), \mathcal{O}(p^6), \dots)$

Disadvantage: Expansion coefficients ("effective couplings") cannot be computed and have to be measured.

- Different reactions can have same chiral couplings.
 - \rightarrow Predictions possible.
- But very many couplings for higher orders ($\geq \mathcal{O}(p^6)$).
 - \rightarrow Cannot be calculated.

Chiral Perturbation Theory Tests

 $K_{ extsf{S}} o \gamma \gamma$:

- $\blacksquare \ \mathcal{O}(p^2) = 0, \ \mathcal{O}(p^4) \text{ known}$
- $\bigcirc \mathcal{O}(p^4)$ prediction: Br = 2.1×10^{-6}

NA48 (2000 data): $\sim 20000 \ \gamma \gamma$ events

 $Br(K_{S} \to \gamma \gamma) = (2.78 \pm 0.06 \pm 0.04) \times 10^{-6}$

 $\implies pprox 30\%$ contribution from $\mathcal{O}(p^6)$

$$K_{ ext{S}} o \pi^0 \gamma \gamma$$
:

Prediction (Ecker, Pich, De Rafael): Br = 3.8×10^{-8} for $z = m_{\gamma\gamma}^2/m_K^2 > 0.2$

NA48 (2000 data): $31 \pi^0 \gamma \gamma$ candidate Background exp.: 13.6 ± 2.8 events

 $Br(K_{S} \to \pi^{0} \gamma \gamma)|_{z>0.2} = (4.9 \pm 1.6 \pm 0.8) \times 10^{-5}$

(preliminal

NA48/2: K^{\pm} Decays

NA48/2: K[±] Decays

NA48/2 experiment in 2003:

- **High intensity data taking with simultaneous** K^+ and K^- beams.
- New beam spectrometer (Micromesh gas chambers) $\implies K^{\pm}$ momentum resolution $\sim 1\%$
- **Expectation:** $\approx 3 \times 10^{11} K^{\pm}$ decays in fiducial volume.

NA48/2: K[±] Decays

Goals of NA48/2:

CP violation in $K^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$ Dalitz plot.

Predicted between 10^{-4} and 10^{-6} — Sensitivity to $< 10^{-4}$.

 $K^+ \to \pi^+ \pi^- e^+ \nu \ (K_{e4}) \ decay$

 \implies Quark condensate $\langle 0|\bar{q}q|0\rangle$, fundamental parameter of ChPT:

 $\langle 0|\bar{q}q|0\rangle = -\frac{f_{\pi}^2}{2} \frac{m_{\pi}^2}{m_u + m_d}$

Absolute measurement of $Br(K^+ \rightarrow \pi^0 e^+ \nu)$

 $\Rightarrow V_{us}$ determination

Rare K^+ decays

- p.43/4

Summary

Summary

