New perspectives for B-physics from the lattice

R. Sommer DESY Zeuthen rainer.sommer@desy.de

- I B-physics and lattice QCD
- II B's on the lattice: the challenges

III New developments

- Non-perturbative HQET
- Results for $F_{\rm B_s}$
- Extrapolation in the quark mass of finite volume effects

IV Perspectives

R. Sommer (DESY, Zeuthen), Physics in Collision, Zeuthen June 2003

I. B-physics and lattice QCD

Relevant for

- the determination of the CKM-parameters
 - "fundamental" parameters of nature
 - CP puzzle
- the b-quark mass
- spectrum and lifetimes of b-hadrons
- non-perturbative tests of HQET

The CKM matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix}_{L} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}_{L}$$
mass eigenstates \neq weak eigenstates
$$\begin{pmatrix} 1 - \frac{\lambda^{2}}{2} & \lambda & A\lambda^{3}(\rho - i\eta)\\ -\lambda & 1 - \frac{\lambda^{2}}{2} & A\lambda^{2}\\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$$
• side from Δm_{d}

$$\Delta m_{s} / \Delta m_{d}$$
• $\eta(1 - \rho)$ from ϵ_{K}
• angle γ from $B \rightarrow h^{+}h^{-}$
• sin 2β from $J/\psi K_{s}$ decays

with $\langle \overline{M} | \mathcal{O}_{\Delta M=2} | M \rangle = \frac{4}{3} m_{\rm M}^2 F_M^2 B_M$

$$\langle B_{\rm d}|\bar{b}\gamma_{\mu}\gamma_5 d|0\rangle = ip_{\mu}F_{\rm B_d}$$

Analysis: [M. Ciuchini et al., 2001; update by M. Ciuchini]

precision CKM-physics, e.g. check of unitarity probably requires the determination of key parameters from "first principles" (lattice QCD) Key parameters from "first principles"

- Key parameters
 - e.g. $\xi, B_{\rm K}, F_{\rm B_d}, B_{\rm B_d}$ - but also $M_{\rm b}$ (RGI quark mass) etc.

• first principles
$$\mathcal{L}_{\text{QCD}} = -\frac{1}{2g_0^2} \operatorname{tr} \{F_{\mu\nu}F_{\mu\nu}\} + \sum_f \overline{\psi}_f \{D + m_f\}\psi_f$$

mean?

Discretization of $\mathcal{L}_{\mathrm{QCD}}$ with

- gauge invariance
- locality
- unitarity

renormalization \Downarrow continuum limit

low energy matrix elements

 $\pm O\left(\frac{1}{\sqrt{\text{computer time}}}\right)$

A meson correlation function in Feynman graphs (full QCD)

\rightarrow quenched approximation:

drop the determinant (neglect fluctuations of $det(D + m_f)$)

 $\leftarrow \mathsf{MODEL}$

Still: we often quench ...

... to practise (not first principles but excellent testing ground of methods & surprisingly accurate in tested cases)

II. The challenges

Take a large lattice as it is possible in the quenched approximation

 $L \approx 2.5 \mathrm{fm}$

finite size effects due to light π 's

 $a \approx 0.07 {
m fm}$ discretization errors for B's

➡ light quarks are too light

b-quark is too heavy

R. Sommer (DESY, Zeuthen), Physics in Collision, Zeuthen June 2003

- light quarks are too light (for the computer ressources)
 - \blacktriangleright "chiral" extrapolations \Longrightarrow brief discussion
 - hopefully new algorithms with better performance at small quark masses [M. Hasenbusch, 2001; M. Lüscher 2003]

Attempts to solve the problem of a heavy b-quark

 ● anisotropic lattices beware: dropping space/time symmetry → fine tuning necessary subtleties under depate

2 extrapolations

beware: order of limits:

 $\lim_{m_h \to m_b} \lim_{am_h \to 0} F(m_h, am_h)$

③ effective theories

- NRQCD
- HQET $\mathcal{L}_{\text{HQET}} = \overline{\psi}_{\text{h}} D_0 \psi_{\text{h}} \frac{1}{2m_{\text{b}}} \overline{\psi}_{\text{h}} \mathbf{D}^2 \psi_{\text{h}} \frac{c_{\sigma}}{2m_{\text{b}}} \overline{\psi}_{\text{h}} \mathbf{B} \cdot \sigma \psi_{\text{h}} + \dots$

④ combinations, in particular of ❷, ④

Dominant procedure in the last decade:

- try several approaches; if they agree, apply to phenomenology
- probably very much limited in precision (10%, 15%, ?)

can we do better?

➡ New developments: it seems so.

Chiral extrapolations

- One of the major problems in lattice QCD (also for light hadrons) computational effort $\propto m_{\pi}^{-(4+z)}, \ z \approx 5$!!
- New discussion for B-physics
 [Kronfeld & Ryan, 2002; Becirevic et al., 2002; Sanz-Cillero, Donoghue & Ross, 2003]
- old procedure: fixed b-quark mass
 - data at various values of $m_{
 m quark} \propto m_\pi^2$
 - linear (maybe quadratic) extrapolation to physical value of m_π^2
- But chiral perturbation theory gives (correct asymptotic expansion)

$$F_{\rm B} = F_0 \left[1 - \left(\frac{1 + 3g_{B^*B\pi}^2}{16\pi^2 F_{\pi}^2} \right) \frac{3}{8} m_{\pi}^2 \ln \frac{m_{\pi}^2}{\mu^2} + C(\mu^2) + \mathcal{O}(m_{\pi}^4) \right]$$

(The physics: effective theory for π -loops) [Grinstein et al., 1992; Goity, 1992] $g_{B^*B\pi} \approx 0.6$, [CLEO 2001; Abada et al, 2002] $C(\mu^2)$ unknown. • Use Chiral perturbation theory formula

$$F_{\rm B} = F_0 \left[1 - \left(\frac{1 + 3g_{B^*B\pi}^2}{16\pi^2 F_{\pi}^2} \right) \frac{3}{8} m_{\pi}^2 \ln \frac{m_{\pi}^2}{\mu^2} + C(\mu^2) + \mathcal{O}(m_{\pi}^4) \right]$$

 $g_{B^*B\pi} \approx 0.6$ [CLEO 2001; Abada et al, 2002]

fit $C(\mu^2)$, $O(m_{\pi}^4)$ dropped done by [JLQCD 2002]:

is chiral PT applicable for these π -masses?

- Donoghue et al.:
 - Chiral perturbation theory with a finite cutoff, $\Lambda = O(GeV)$
 - argue: extended applicability domain because $m_{\pi}^2 \rightarrow \infty$ limit is properly treated (π decouples!)

- model (cutoff) dependent taming of ${
 m O}(m_\pi^4)$ terms
- present uncertainty (also in ξ) 10 % : [Kronfeld & Ryan] 5 % : [Donoghue et al.]
- unfortunately: these are all (clever but) rough estimates
- true solution requires smaller quark masses new algorithms [M. Hasenbusch, 2001; M. Lüscher 2003; ???] may help

III. New developments

Non-perturbative HQET

 $m_{
m b} \ll \Lambda_{
m QCD}$: accurate expansion in $\Lambda_{
m QCD}/m_{
m b}$

possible stumble stones:

0 statistical precision

2 number of parameters grows with the order in $\Lambda_{
m QCD}/m_{
m b}$

③ parameters have to be fine-tuned **non-perturbatively** for $a \rightarrow 0$ to exist

considerable improvement on ●
by change of the discretization of HQET
(discretization errors checked!)
[M. Della Morte et al. (▲LPHA), 2003]

best version makes use of "HYP-links" [Hasenfratz & Knechtli, 2001]

solution to ②, ③: matching of HQET & QCD in finite volume [Heitger & S, 2001; ^{ALPHA} , 2003]

Non-perturbative matching of HQET and QCD

• why non-perturbative matching ?

HQET: effective theory, new operators at each order in $1/m_b$ new free parameters c_k parameters are computable from QCD:

transfer of predictivity QCD \rightarrow HQET

this has to be done non-perturbatively, otherwise there are errors

$$\Delta c_k \sim \frac{g_0^{2(l+1)}}{a} \sim \frac{1}{a \ [\ln(a\Lambda)]^{l+1}} \xrightarrow{a \to 0} \infty \qquad \text{simple case} \\ \text{parameters computed to} \\ \frac{l-\text{loops}}{a}$$

no continuum limit! (if c_k are computed at a finite order in g^2)

- non-perturbative matching: requires to be able to simulate the b-quark !
- The trick: start in small volume, $L \approx 0.2 \, {\rm fm}$

R. Sommer (DESY, Zeuthen), Physics in Collision, Zeuthen June 2003

• The trick: start in small volume, $L \approx 0.2 \, \text{fm}$: $L \ll 1/m_{\pi}$

QCD

HQET

➡ HQET-parameters from QCD-observables in small volume

Physical observables (e.g. $B_{\rm B_s}, F_{\rm B_s}$) need a large volume, such that the B-meson fits comfortably: $L = L_0 \approx 2 \, {\rm fm}$

Connection achieved by recursive method: [Lüscher, Weisz & Wolff, 91; ALPHA 1993-2003]

- first fully non-perturbative formulation of HQET
- continuum limit can be taken in all steps

At lowest order in $1/m_b$ (static approximation) simple equations result: example: computation of the b-quark mass

$$\Gamma(L) =$$
 finite volume B-meson "mass"
= energy of a state with quantum # of a B in an L^4 world
 $L_2 = 4L_1 = 2L_0$

$$m_{\rm B} = \underbrace{E_{\rm stat} - \Gamma_{\rm stat}(L_2)}_{a \to 0 \text{ in HQET}} + \underbrace{\Gamma_{\rm stat}(L_2) - \Gamma_{\rm stat}(L_0)}_{a \to 0 \text{ in HQET}} + \underbrace{\Gamma(L_0, M_b)}_{a \to 0 \text{ for } M_b L_0 \gg 1: L_0 \approx 0.2 \text{fm}}$$

 \blacktriangleright Solve the above equation for $M_{\rm b}$ (the RGI b-quark mass)

$$m_{\rm B} = \underbrace{E_{\rm stat} - \Gamma_{\rm stat}(L_n)}_{a \to 0 \text{ in HQET}} + \underbrace{\Gamma_{\rm stat}(L_n) - \Gamma_{\rm stat}(L_0)}_{a \to 0 \text{ in HQET}} + \underbrace{\Gamma(L_0, M_b)}_{a \to 0 \text{ for } M_b L_0 \gg 1: L_0} \approx 0.2 \text{fm}$$

continuum extrapolations (results still in quenched approximation):

Continuum limit for F_{B_s}

$F_{\rm PS}\sqrt{m_{\rm PS}} = C_{\rm PS}(m_{\rm PS})\Phi_{\rm RGI}^{\rm stat} + O(1/m_{\rm PS})$

 $C_{\rm PS}(m_{\rm PS})$ perturbatively computable weak (logarithmic) $m_{\rm PS}$ -dependence Shifman & Voloshin, 87; Politzer & Wise, 88; ... Chetyrkin & Grozin, 2003 (3-loop)

- Computation of F_{B_s} in lowest order in HQET
 - NP renormalization [Heitger,Kurth & S; 2003
 - action with reduced statistical errors —
 - linear *a*-effects removed —
 - preliminary continuum extrapolation
- $F_{\rm PS}(m_{\rm PS})$ for $m_{\rm PS} \approx (0.8 1.8) \times m_{\rm D_s}$
 - details as above
- combine by interpolation (linear in $1/m_{\rm PS}$)

quenched!

LPHA

• combine by interpolation

 $F_{\rm PS}\sqrt{m_{\rm PS}} = C_{\rm PS}(m_{\rm PS})\Phi_{\rm RGI}^{\rm stat} + \frac{c_-}{m_{\rm PS}}$

preliminary, quenched!

ALPHA Collaboration

- improvements in progress
- compares well with the result of second new method (•), to be discussed...

Extrapolation of finite volume effects in the quark mass

Guagnelli, Palombi, Petronzio & Tantalo, 2002-2003

• Same starting point as NP HQET b-quark can be simulated in small volume $(L_1 = 0.4 \text{ fm})$

• Observation:
$$\sigma_{\Phi}(m_h, L) = \frac{\Phi(m_h, 2L)}{\Phi(m_h, L)}$$
 has weak dependence on m_h

• $\lim_{m_h \to m_h} \lim_{am_h \to 0}$ easier to take for such ratios (finite size effects)

in practise: $\sigma_{\Phi}(\underline{m_h}, L) = \sigma_0(L) + \frac{\sigma_1(L)}{\underline{m_h}}$

(e.g. $\Phi = F_{\rm B}$)

• in detail (e.g. $\Phi = F_{\rm B}$)

R. Sommer (DESY, Zeuthen), Physics in Collision, Zeuthen June 2003

- Also a determination of b-quark mass has been performed by this method.
- $32^3 \times 64$ lattices needed; difficult for dynamical fermions

IV. Perspectives

• $m_l \rightarrow m_{phys}$ extrapolations with dynamical quarks (,d,s) Exciting paper ["High-Precision Lattice QCD Confronts Experiment",

Davies et al., hep-lat/0304004

```
claim: "small quark masses in N_{\rm f}=3 theory under control" $\rm no\ more\ quenching
```

some questions about the first principles remain

```
(locality, unitarity, continuum limit)
```

 new methods are available which are promising for dynamical quarks

do not need huge lattices

- Non-perturbative HQET
- Extrapolation of observables in L and $m_{\rm b}$
- Chances that methods will be developed which lead to precision matrix elements
 → match experimental precision within this decade ?!
 1/m_b corrections ...

in general: Progress through a combination of new methods and new computers

have a look at our massively parallel **computer**: APEmille

time: now

meet: here