Measurement Of Sin2α (Sin2φ₂) And Rare Hadronic B Decays At BaBar and Belle

Yibin Pan University of Wisconsin-Madison

Succession of the second secon

Outline

Introduction

- $> \sin 2\alpha_{eff}$ measurements in B $\rightarrow \pi\pi$
- $> \sin 2\alpha_{eff}$ measurements in B $\rightarrow \rho\pi$
- Branching Fractions For Rare Hadronic B Decays
- ➤ Charge asymmetries.
- ➢ Summary

CP Violation And The Standard Model

SM weak interactions among quarks are controlled by CKM matrix:

CP Violation In Neutral B System

Rare Hadronic Decays

- Suppressed at tree(T) level due to Cabbibo, FCNC, etc.
- Significant Penguin (P) contribution.
- Broad physics interests:
 - Measure CP phases:
 - Angle $\alpha(\phi_2): B \rightarrow \pi\pi, \rho\pi, \rho\rho$ Angle $\beta(\phi_1): B \rightarrow \eta' K, \phi K$ (see K. Abe's talk) Angle $\gamma(\phi_3): B \rightarrow K\pi, \pi\pi$
 - Direct CPV via $A_{CP} = (\overline{B}-B)/(\overline{B}+B)$
 - Probes new physics in the loop.
 - Test hadronic models: SU(2)/SU(3) symmetry, QCD factorization, FSI...
- Modes of interests (all charmless):
 - B \rightarrow hh (h=K, π)
 - B $\rightarrow \rho \pi/K^{(*)}/\rho$
 - B $\rightarrow \eta^{(\prime)}/\omega/\phi K^{(*)}/\pi$
 - Also: B→baryons

This talk: More slides on CPV in $B \rightarrow \pi\pi$ and $\rho\pi$

Luminosity

CP Violation In B⁰ $\rightarrow \pi^+\pi^- \qquad CP=+1$

δ: strong phase difference

Tree only:
$$\lambda_{\pi\pi} = e^{i2\alpha}$$
, $C_{\pi\pi} = 0$, $S_{\pi\pi} = sin(2\alpha)$

With penguin:
$$C_{\pi\pi} \neq 0$$
, $S_{\pi\pi} = 2\sin(2\alpha_{eff})/(1+|\lambda_{\pi\pi}|^2)$
if $\delta \neq 0$

 α to be extracted from α_{eff} with additional information.

$B^0 \rightarrow \pi\pi$ Results: BaBar(81 fb⁻¹)

B⁰ \rightarrow ππ Results: Belle (78 fb⁻¹)_{hep-ex/0301032,}

Physical Boundary Condition Test

Belle's $B^0 \rightarrow \pi \pi$ CP Asymmetry: Confidence Regions

□ Confidence level calculated with Feldman-Cousins frenquentist approach

note: $\Delta = -C$

$B^0 \rightarrow \pi^+\pi^-$ CPV Results: BaBar and Belle

(CKMFitter group: CL=2.8%)

➤ Waiting for summer updates...

Constraints On α

- B $\rightarrow \pi^+\pi^-, \pi^+\pi^0, \pi^0\pi^0$ related by SU(2)
- Isospin triangles yields α .

(up to eight-fold ambiguity)

	BFs (10 ⁻⁶)			
Mode	BaBar	Belle		
$\pi^+\pi^-$	$4.7 \pm 0.6 \pm 0.2$	$4.4 \pm 0.6 \pm 0.3$		
$\pi^+\pi^0$	$5.5^{+1.0}_{-0.9} \pm 0.6$	$5.3 \pm 1.3 \pm 0.5$		
$t^0\pi^0$	$1.6^{+0.8+0.6}_{-0.9-0.3} < 3.6$	$1.8^{+1.4+0.5}_{-1.3-0.7} < 4.4$		

90% CL limits so far.

Grossman-Quinn bound $|2\alpha_{eff} - 2\alpha| \le \cos^{-1} \left[1 - 2 \frac{BR(B^0 \to \pi^0 \pi^0)}{BR(B^{\pm} \to \pi^{\pm} \pi^0)} \right] \longrightarrow \frac{90\% CL}{|\alpha_{eff} - \alpha| < 51^0 \text{ (BaBar)}}$ $|\alpha_{eff} - \alpha| < 68^0 \text{ (Belle)}$

Also available: Gronau/I ondon/Sinha/Sinha Charles Rounds

Constraints On α : Another Approach 0.15</P/T<0.45 Gronau & Rosner presciption: • $A_{\pi\pi}$, $S_{\pi\pi}$ = function of (α , β , |P/T|, δ) • Convert $(A_{\pi\pi}, S_{\pi\pi})$ to (α, δ) with β and |P/T| as parameters world average e.g. |P/T|=0.3 $(23.5 + 2.4 / - 2.2)^{0}$ 160 140 120 CL=0.683 α_{100} Belle finds: CL=0.955 80 $78^{\circ} < \alpha < 121.6^{\circ} (95\% \text{ C.L.})$ CL=0.9973 60 insensitive to δ 40 20 -150 -100 -50 0 50 100 150 $\delta = \delta_{\rm p} - \delta_{\rm T}$ Compatible with prediction

from CKM fitter: $101^{\circ} \pm 15^{\circ}$

Measuring CPV With $B^0 \rightarrow \rho \pi (3\pi)$

 $> B \rightarrow \pi^+ \pi^- \pi^0$ is also a b \rightarrow uud process which probes α .

- It receives both tree(T) and penguin(P) contributions so α must be extracted out of phase confusion. This can be done via a full time-dependent Dalitz analysis.
- Experimentally this is challenging so a convenient first step is to look only at the quasi-two-body regions.

B $\rightarrow \rho \pi$ Time Dependent Asymmetry

CPV if $C \neq 0$ or $S \neq 0$

 $\Delta C, \Delta S$: reflect final-state difference

B $\rightarrow \rho \pi$: Time Distribution and Asymmetry direct CPV? (BaBar, 82 fb⁻¹)

$$C_{\rho\pi} = 0.36 \pm 0.18 \pm 0.04$$

$$S_{\rho\pi} = 0.19 \pm 0.24 \pm 0.03$$

$$\Delta C_{\rho\pi} = 0.28^{+0.18}_{-0.19} \pm 0.04$$
$$\Delta S_{\rho\pi} = 0.15 \pm 0.25 \pm 0.03$$

Note: naïve factorization predicts $\Delta C_{\rho\pi} \sim 0.4$.

hep-ex/0207068 submitted to PRL

B \rightarrow $\rho\pi$: **Direct CPV**?

 $A_{CP}, C_{0\pi}, \Delta C_{0\pi}$ translated into 2 pairs of CP conjugated rates ($\propto |\mathcal{A}|^2$)

$$N(B^{0} \to \rho^{-} \pi^{+}) \equiv \frac{dN(B^{0} \to \rho^{-} \pi^{+})}{dt} |_{t=0} \int e^{-t/\tau} dt = \frac{1}{4} (1 + A_{CP}^{\rho\pi}) (1 + (C + \Delta C)) N_{\rho\pi} = 137^{+34}_{-32} \pm 11$$

$$N(\overline{B}^{0} \to \rho^{+} \pi^{-}) \equiv \frac{dN(\overline{B}^{0} \to \rho^{+} \pi^{-})}{dt} |_{t=0} \int e^{-t/\tau} dt = \frac{1}{4} (1 - A_{CP}^{\rho\pi}) (1 + (C - \Delta C)) N_{\rho\pi} = 32^{+26}_{-25} \pm 6$$

$$N(B^{0} \to \rho^{+}\pi^{-}) \equiv \frac{dN(B^{-} \to \rho^{-}\pi^{-})}{dt}|_{t=0} \int e^{-t/\tau} dt = \frac{1}{4} (1 + A_{CP}^{\rho\pi}) (1 + (C + \Delta C)) N_{\rho\pi} = 144^{+30}_{-27} \pm 11$$

$$\mathsf{CP}_{N(\overline{B}^{0} \to \rho^{-} \pi^{+})} = \frac{dN(\overline{B}^{0} \to \rho^{-} \pi^{+})}{dt} |_{t=0} \int e^{-t/\tau} dt = \frac{1}{4} (1 - A_{CP}^{\rho\pi}) (1 + (C - \Delta C)) N_{\rho\pi} = 116^{+33}_{-31} \pm 100^{-10}_{-31} \pm 100^{-10}_{-31} + 100^{-10}$$

Define two asymmetries:

$$= \frac{N(\overline{B}^{0} \to \rho^{+}\pi^{-}) - N(B^{0} \to \rho^{-}\pi^{+})}{\Sigma} = -0.62^{+0.24}_{-0.28} \pm 0.06$$

$$= \frac{N(\overline{B}^{0} \to \rho^{-}\pi^{+}) - N(B^{0} \to \rho^{+}\pi^{-})}{\Sigma} = -0.11^{+0.16}_{-0.17} \pm 0.04$$

More statistics is needed

 A_{\perp}

Branching Fractions (BF) And A_{CP}

$$\begin{split} A_{CP} &\equiv \frac{\Gamma(\overline{B} \to \overline{f}) - \Gamma(B \to f)}{\Gamma(\overline{B} \to \overline{f}) + \Gamma(B \to f)} \\ &= \frac{2 |\mathbf{P}|| T |\sin\Delta\phi\sin\Delta\delta}{|\mathbf{P}|^2 + |T|^2 + 2 |\mathbf{P}|| T |\cos\Delta\phi\cos\Delta\delta} \end{split}$$

The game:

- Collect(reconstruct) signals
- Understand efficiency
- Calculate BF and A_{CP}

Note: Most of the BF results presented here are preliminary

$K\pi$ And $\pi\pi$ Yields: Belle

Summary Of Kπ And ππ Branching Fractions

	BaBar	(81.2 fb ⁻¹)	Bel	lle(78 fb ⁻¹)
Mode	Nsignal	BF(10 -6)	Nsignal	BF(10 -6)
K ⁺ π ⁻	$589 \pm 30 \pm 17$	$17.9 \pm 0.9 \pm 0.7$	595.9 ^{+33.2} _32.5	$18.5 \pm 1.0 \pm 0.7$
$K^+\pi^0$	$239 {}^{+21}_{-22} \pm 6$	$12.8 {}^{+1.2}_{-1.1} \pm 1.0$	198.9 ± 21.5	$12.8 \pm 1.4^{+1.4}_{-1.0}$
$K^0\pi^+$	$172 \pm 17 \pm 9$	$17.5^{+1.8}_{-1.7} \pm 1.3$	187.0 ± 16.3	$22.0 \pm 1.9 \pm 1.1$
$K^0\pi^0$	$86 \pm 13 \pm 3$	$10.4 \pm 1.5 \pm 0.8$	72.6 ± 14.0	$12.6 \pm 2.4 \pm 1.4$
$\pi^+\pi^-$	$157 \pm 19 \pm 7$	$4.7 \pm 0.6 \pm 0.2$	132.7 ^{+18.9} 18.2	$4.4 \pm 0.6 \pm 0.3$
$\pi^+\pi^0$	$125 + 23_{-21} \pm 17$	$5.5 {}^{+1.0}_{-0.9} \pm 0.7$	72.4 ± 17.4	$5.3 \pm 1.3 \pm 0.5$
$\pi^0\pi^0$	23 + 10 + 8.4 - 9 - 4.4	1.6 +0.7+0.6<3.6	12.0 ^{+9.1} 8.6	$1.8^{+1.4+0.5}_{-1.3-0.7}$ <4.4
K+K-	1 ± 8 (<16)	<0.6	$0.0^{+5.7}_{-0.0}$	<0.7
K ⁺ K ⁰	$-5.6^{+2.8}_{-5.5}\pm2.5$	$-0.6^{+0.6}_{-0.7} \pm 0.3 < 1.3$	8.6 ± 5.9	$1.7 \pm 1.2 \pm 0.1 < 3.4$
K ⁰ K ⁰	$4.3^{+5.2}_{-4.1} \pm 1.1$	<1.6	2.0 ± 1.9	$0.8 \pm 0.8 \pm 0.1 < 3.2$

➢ Good agreement between BaBar and Belle (and CLEO)

Kπ And ππ BFs: Consistent Results

K π And $\pi\pi$: BF Ratios

• $\pi^+\pi^-$ and $K^+\pi^-$:	BaBar	Belle	
$\Gamma(\pi^+\pi^-)/\Gamma(\mathrm{K}^+\pi^-)$	$0.26 \pm 0.04 \pm 0.02$	$0.24 \pm 0.04 \pm 0.02$	<< 1/7
Isospin ratios:	BaBar	Belle	if tree on
$\Gamma(\mathrm{K}^+\pi^-)/\Gamma(\mathrm{K}^0\pi^+)$	$1.11 \pm 0.13 \pm 0.09$	$0.91 \pm 0.09 \pm 0.06$	
$2\Gamma(\mathrm{K}^+\pi^0)/\Gamma(\mathrm{K}^0\pi^+)$	$1.46 \pm 0.20 \pm 0.16$	$1.16 \pm 0.16 \pm 0.14$	~ 1
$\Gamma(\mathrm{K}^+\pi^0)/2\Gamma(\mathrm{K}^0\pi^0)$	$0.86 \pm 0.13 \pm 0.07$	$0.74 \pm 0.15 \pm 0.09$	
$\Gamma(\pi^+\pi^-)/\Gamma(\pi^+\pi^0)$	$0.46 \pm 0.10 \pm 0.05$	$0.45 \pm 0.13 \pm 0.05$	≠1

what we have learned:

- \succ Penguin seems to be strong.
- Isospin symmetry holds well for penguin dominated
 (EW penguin small)
- ► Need more statistics for further constraint

Preliminary

B→♦K Branching Fractions

Preliminar

Another b \rightarrow sss process: B \rightarrow $\eta'K$

Preiminar

10

More BFs: $B \rightarrow \rho K$ and Inclusive hhh

	BF(10 ⁻⁶)					
Mode	BaBa	r	B	elle	modes	BF(10-6,
ρ ⁰ Κ*+	7.7 +2.1	± 1.4			$B^+ \rightarrow \pi^+ \pi^- \pi^+$	$10.9 \pm 3.3 \pm 1.6$
ρ-K+	7.3+1.3	±1.3			$B^+ \rightarrow K^+ \pi^- \pi^+$	59.1±3.8±3.2
$ ho^+\pi^-$	22.7 ± 1.8	±2.2	20.8 + 6.0	+ 2.8 -6.3 -3.1	K*0π+	10.3±1.2±1.8
$ ho^0\pi^+$	24 ± 8	3±3	8.0 + 2.3	$_{-6.3}\pm0.7$	f ₀ K+	9.2±1.2±2.4
ρ+ϱ ⁰	22.5 +5.7	± 4.9	31.7 ±	7.1 +3.7	$\chi_{c}K^{+}$	1.46±0.35±0.12
Angular Analysis			"higher" K ^{*0′} π+	25.1±2.0±9.0		
Γ_{L}/Γ = (94.8 ± 10.6 ± 2.1)% (Belle))	"higher" f ₀ K ⁺	<12	
1 _L /1	l = (9/±/±	4) % (B	aBar)	•	ρ ⁰ K+	<6.2
modes BF		(10-6)		Kππ non-res.	<17	
$B^+ \rightarrow K^+ K_s K_s$ 13.4		13.4±	1.9±1.5		В⁺→ККК	29.6±2.1±1.6
$B^{0} \rightarrow K_{s} K_{s} K_{s} \qquad 4.3 + 1.6$		$_{-1.4}\pm0.8$		$B^+ \rightarrow KK\pi^+$	<6.3	
B ⁽	$\rightarrow K^{+}K^{-}K^{0}$	29.3±	3.4±4.1		$B^+ \rightarrow K^- \pi^+ \pi^+$	<1.8
В	B ⁺ \rightarrow K ⁺ $\pi^{+}\pi^{-}$ 53.9±3.1±5.7			$B^+ \rightarrow K^+ K^+ \pi^-$	<1.3	
R+	$\rightarrow K + K + K -$	22 0+	1 8+2 7			1.5

Preliminary

Still More BFs

	BF(10 ⁻⁶)		
Mode	BaBar	Belle	
ηπ+	$4.2 \pm 1.0 \pm 0.3$	$5.4^{+2.0}_{-1.7}\pm0.3$	
ηΚ+	$2.8 \pm 0.8 \pm 0.2$	$5.3 + 1.8_{-1.5} \pm 0.6$	
ηK ⁰	<4.6	<12	
ηΚ*+	$22.1 + 11.1_{-9.2} \pm 3.3$	$26.5 + 7.8 - 7.0 \pm 3.0$	
ηK*0	19.8 +6.5 $_{-5.6} \pm$ 1.7	$16.5^{+4.6}_{-4.2} \pm 1.2$	
$\omega \pi^+$	$5.4 \pm 1.0 \pm 0.5$	$5.9^{+1.4}_{-1.3}\pm0.6$	
ωK+	$5.0 \pm 1.0 \pm 0.4$	$6.7^{+1.3}_{-1.2} \pm 0.6$	
ωK ⁰	$5.3 \pm 1.3 \pm 0.5$	<7.6	

No evidence of direct CPV from time-independent A_{CP}

naliminany

Summary

□ Rare hadronic decays are no longer so "rare" (think yields), thanks to large amount B mesons produced at B-factories.

CP measurements in rare decays became a reality

- $\mathbf{B} \rightarrow \pi^{+}\pi^{-}$: $C_{\pi\pi} = -0.30 \pm 0.25 \pm 0.04, S_{\pi\pi} = +0.02 \pm 0.34 \pm 0.05$ (BaBar) $C_{\pi\pi} = -0.77 \pm 0.27 \pm 0.08, S_{\pi\pi} = -1.23 \pm 0.41 + 0.08_{-0.07}$ (Belle) • $\mathbf{B} \rightarrow \rho^{+}\pi^{-}$: $A_{-+} = -0.63 + 0.24_{-0.28} \pm 0.06, A_{+-} = -0.11 + 0.16_{-0.17} \pm 0.04$ $S_{\rho\pi} = 0.19 \pm 0.25 \pm 0.03$ (BaBar)
- also: "sin2β" in φK_s, η'K_s (see K. Abe's talk)
 New modes observed, adding to a large pool of existing ones. BFs became more precise.
- No sign of new physics yet, but we are more sensitive than ever.
 Lots of achievement and we expect more.

Backup slides

B-Factories: Asymmetric e⁻e⁺ Colliders@ Y(4s)

BaBar and Belle

DIRC: Quartz bar + water tank SVT: 5-layer

ACC: aerogel Cherenkov counters SVD: 3-layer. (4-layer soon)

→high performance vertexing and PID←

Exclusively reconstructed B (reco B)

- Use daughter tracks to fit for decay vertex
- algorithms and resolutions decay mode dependent
- $\sigma_z \approx 65-90 \ \mu m$

Inclusively reconstructed B (Tag B)
Inclusive vertexing for all remaining good tracks
use additional beam spot constraint if available.
σ₇ ≈ 140-160 µm