Observation of New Narrow D_s states.

Antimo Palano

INFN and University of Bari, Italy

From the BaBar Collaboration

XXIII Physics in Collision Zeuthen, Germany June 26–28, 2003

1

Outline.

- Introduction.
- Events selection.
- Observation of $D_{sJ}^{*+}(2317) \rightarrow D_s^+ \pi^0$
- Observation of $D_{sJ}^+(2457) \rightarrow D_s^{*+}\pi^0$
- Comparison with other experiments.
- Theoretical work in progress.
- Conclusions and Outlook.

(Charge conjugation is implied through all this work.)

Introduction.

□ The expected spectrum of the $c\bar{s} D_s$ mesons still contains empty slots. □ For example, the Godfrey-Isgur-Kokoski potential model predicts the $J^P = 0^+$ member at a mass of 2.48 GeV/ c^2 , with a width 270–990 MeV decaying mainly to $D^0 K$. The large width would make it difficult to observe.

 \Box The model also predicts two 1⁺ states at masses of 2.55 and 2.56 GeV/ c^2 .

 Potential model expectations and experimental status for D_s mesons.
Remarkably good agreement up to now.
Exception: the newly discovered states at 2.317 and 2.457 GeV/c².

Data selection.

 \Box Charm Analyses are performed on data selected from continuum $\bar{c}c$ production.

$$e^+e^- \to c\bar{c}$$

 \Box In this work we search for resonances decaying to:

$$D_s^+ \pi^0 \quad and \quad D_s^+ \pi^0 \gamma \qquad \to K^+ K^- \pi^+ \gamma \gamma(\gamma)$$

□ Qualitative sketch, not to scale, of one event.
□ Data sample: 91.5 fb⁻¹.

$K^+K^-\pi^+$ mass spectrum.

 $\Box D_s^+ \text{ mesons are selected through the } \phi \pi^+ \text{ and } \overline{K}^{*0} K^+ \text{ decay modes.}$ $\Box \text{ Require } | \cos \theta | > 0.5 \text{ to enhance the } D_s^+ \text{ signal } (\theta, \text{ helicity angle}).$ $\Box \text{ Resulting } \phi \pi^+ \text{ and } \overline{K}^{*0} K^+ \text{ mass spectra:}$

□ The two samples have similar sizes. □ Sum of the $\phi \pi^+$ and $\overline{K}^{*0}K^+$ contributions (≈ 80 000 D_s^+ events above background):

$D_s^+\pi^0$ mass spectrum.

□ Compare $(K^+K^-\pi^+)\pi^0$ mass spectra for the D_s^+ signal region and sidebands. □ We observe the known decay: $D_s^{*+}(2112) \to D_s^+\pi^0$.

 \Box Totally unexpected large signal (≈ 2200 events) at 2.32 GeV/ c^2 .

 \square No signals for the D_s^+ sidebands.

$D_s^+\gamma\gamma$ mass for π^0 signal and sidebands.

 \Box Plot of the $\gamma\gamma$ effective mass defining π^0 signal and sideband regions. $\Box D_s^+ \gamma\gamma$ mass spectrum for the π^0 signal region.

 \square We make no use of the fitted π^0 , use the 4-momentum of the γ pair.

 \Box Same large signal at 2.32 GeV/ c^2 .

 $\square D_s^{*+}(2112)$ signal washed out because of " π^0 " resolution.

Test for reflections using Monte Carlo simulation.

 \Box Sum of $\phi \pi^+$ and $\overline{K}^{*0}K^+$ mass distributions and $D_s^+\pi^0$ mass spectrum.

 \square We observe the known decay: $D_s^{*+}(2112) \rightarrow D_s^+ \pi^0$.

 \Box The $D_s^+\pi^0$ mass spectrum shows no significant signal in the 2.32 GeV/ c^2 mass region. We would expect ≈ 1400 events.

 \Box We conclude that the 2.32 GeV/ c^2 structure is not due to reflections from known states.

Fit to the $D_s^+\pi^0$ mass spectrum in the 2.32 GeV/ c^2 region.

□ In order to select e^+e^- continuum events, require the $D_s^+\pi^0$ center of mass momentum $p^* > 3.5$ GeV/c.

 \Box Fit with a polynomial and a single Gaussian (statistical errors only).

$$m = 2316.8 \pm 0.4 \text{ MeV}/c^2$$
 $\sigma = 8.6 \pm 0.4 \text{ MeV}/c^2$

• No significant $D_{sJ}^{*+}(2317) \rightarrow D_s^{*+}(2112)\gamma$ decay.

Could the $D_{sJ}^{*+}(2317)$ signal be due to the decay of a narrow state at 2.46 GeV/ c^2 in $D_s^+ \pi^0 \gamma$?

 \Box If we assume the existence of a narrow state, the $X^+(2460)$ which decays to $D_s^{*+}(2112)\pi^0$, the kinematic cross-over would result in a narrow signal in $m(D_s^+\pi^0)$ near 2.32 GeV/ c^2 .

\Box Two ways to test this hypothesis:

- The $D_{sJ}^{*+}(2317)$ lineshape.
- Comparison of the $D_{sJ}^{*+}(2317)/X^+(2460)$ relative rates for data and $X^+(2460)$ Monte Carlo simulation.

The $D_{sJ}^{*+}(2317)$ lineshape.

 \Box Use of Monte Carlo simulation of:

$$e^+e^- \rightarrow X^+(2460) + X_{recoil}$$

 $\rightarrow D_s^{*+}(2112)\pi^0$

 \Box Comparison between the $X^+(2460)$ reflection from Monte Carlo and the $D_{sJ}^{*+}(2317)$ data signal after background subtraction.

 \Box Conclusion: the $D_{sJ}^{*+}(2317)$ lineshape does not agree with that expected from $X^+(2460)$ reflection.

 $D_{sJ}^{*+}(2317)/X^{+}(2460)$ ratio.

 \Box The second test is to compute the ratio $D_{sJ}^{*+}(2317)/X^+(2460)$ for data and Monte Carlo for $X^+(2460) \rightarrow D_s^{*+}(2112)\pi^0$ with no $D_{sJ}^{*+}(2317)$ generated.

 \Box For $p^* > 3.0$ GeV/c:

$$\frac{N(D_{sJ}^{*+}(2317))/N(X^{+}(2460))(Data)}{N(D_{sJ}^{*+}(2317))/N(X^{+}(2460))(MC)} = 5.4 \pm 0.3$$

 \Box In the data we find ≈ 5 times more $D_{sJ}^{*+}(2317)$ events than expected from a Monte Carlo simulation with only $X^+(2460)$ production.

 \Box Conclusion: the relative rates disagree with the hypothesis that the $D_{sJ}^{*+}(2317)$ signal is due entirely to production of a state at $\approx 2.46 \text{ GeV}/c^2$ which decays to $D_s^{*+}(2112)\pi^0$.

The 2.46 GeV/ c^2 region of $m(D_s^+\pi^0\gamma)$: a new particle or an artifact of kinematics?

 \Box In an inclusive environment, the scatter diagrams of $\Delta m(D_s^+\gamma)$ vs $\Delta m(D_s^*\pi^0)$ exhibit bands due to $D_s^{*+}(2112)$ and $D_{sJ}^{*+}(2317)$ which cross near $m(D_s^+\pi^0\gamma)=2.46$ GeV/ c^2 .

 $\square D_s^{*+}(2112)\pi^0$ and $D_{sJ}^{*+}(2317)\gamma$ mass distributions.

 \Box Structures at ≈ 2.46 GeV/ c^2 in both $D_s^{*+}(2112)\pi^0$ and $D_{sJ}^{*+}(2317)\gamma$. At this level, not possible to separate them.

 \Box Subtracting the adjacent tiles, the $D_{sJ}^+(2457)$ "Dalitz plot" projections on the two axes can be extracted.

 \Box Predicted events from sidebands (assuming linear behavior): $N_p = 312 \pm 12$

- \Box Observed events: $N_o = 472$
- \Box Excess: $N_e = 160 \pm 25$. A better than 6σ effect.

$D_{sJ}^+(2457)$ projections.

 $\square D_{sJ}^+(2457)$ projections compared with Monte Carlo simulations for:

 $\square D_{sJ}^+(2457) \rightarrow D_s^{*+}(2112)\pi^0$ decay clearly favoured.

Angular analysis.

 \Box Distribution of the helicity angle θ of the γ with respect to the $D_s^{*+}(2112)$ direction in the $D_{sJ}^+(2457)$ rest frame (preliminary).

 \Box Inconsistent with $J^P = 0^-$.

$D_{sJ}^+(2457)$: results from other experiments.

$\textbf{CLEO} 13.5 \text{ fb}^{-1}$

 $\Delta m = 351.0 \pm 1.7 \pm 1.0 \text{ MeV}/c^2$ $N = 41 \pm 12$ No peaking background

BELLE preliminary 78 fb^{-1}

B decays from **BELLE**.

 \Box Evidence for:

 \square Evidence for $D_{sJ}^+(2457) \rightarrow D_s^+\gamma$: J = 0 excluded.

Search for structure in $D_s^+\pi\pi$.

BABAR $D^0\pi^0\pi^0$

 \square No structures seen in $D_s^+\pi\pi$.

CLEO $D^0\pi^+\pi^-$

CDF II $D^0\pi^+\pi^-$

Experimental Summary $(D_{sJ}^{*+}(2317))$.

 \Box A large (≈ 2200 events), narrow signal has been discovered by BaBar experiment in the inclusively-produced $D_s^+\pi^0$ mass distribution for the D_s^+ decay modes:

$$D_s^+ \to K^+ K^- \pi^+, \qquad D_s^+ \to K^+ K^- \pi^+ \pi^0$$

 \Box The fitted mass value is:

$$m = 2316.8 \pm 0.4 \text{ MeV/c}^2$$
 (statistical error only)

 \Box The measured width is consistent with the experimental resolution, which implies a small intrinsic width ($\Gamma < 10$ MeV).

 \Box The structure is not observed in the $D_s^+\gamma$, $D_s^+\gamma\gamma$, $D_s^{*+}(2112)\gamma$, $D_s^+\pi^0\pi^0$, $D_s^+\pi^+\pi^-$ nor $D_s^+\pi^0\gamma$ mass distributions.

 \Box The quantum numbers are consistent with being $J^P = 0^+$, but other natural spin-parity assignments cannot be excluded.

□ This observation has been confirmed by CLEO in continuum and by BELLE in both continuum and B decays.

Experimental Summary $(D_{sJ}^+(2457))$.

□ BaBar has first shown evidence of structure in the $D_s^+ \pi^0 \gamma$ mass distribution at $\approx 2.46 \text{ GeV}/c^2$. "However, the complexity of the overlapping kinematics of the $D_s^{*+}(2112) \rightarrow D_s^+ \gamma$ and $D_{sJ}^{*+}(2317) \rightarrow D_s^+ \pi^0$ requires more detailed study ... in order to arrive at a definitive conclusion." Phys.Rev.Lett. 90 (2003) 242001 □ CLEO experiment observes $D_s^+(2463)$ state (hep-ex/0305100) □ Confirmed by Belle, including $D_s^+ \gamma$ decay mode □ The preliminary analysis reported here by the BaBar experiment reports the observation of a state at 2.457 GeV/ c^2 decaying to $D_s^{*+}(2112)\pi^0$. The parameters of this state are the following (statistical errors only):

$$\Delta m = 344.6 \pm 0.8, \qquad \sigma = 7.0 \pm 1.5 \text{ MeV/c}^2$$

$$m(D_{sJ}^+(2457)) = 2.457 \pm 0.001 \text{ GeV}/c^2$$

 \Box The width is consistent with experimental resolution.

Experimental Summary.

 \Box The mass of the $D_{sJ}^{*+}(2317)$ is 40 MeV/ c^2 below D^0K threshold.

 \Box The mass of the $D_{s,I}^+(2457)$ is 44 MeV/ c^2 below $D^{0*}K$ threshold.

 \Box If the isospin of these states is I=0, since the $D_s^+\pi^0$ and $D_s^{*+}\pi^0$ systems have isospin I=1, these decays violate isospin conservation. This would explain the small widths.

 \Box In this case it is possible that this isospin violating decay proceeds via $\eta - \pi^0$ mixing, as proposed by Cho and Wise. Phys.Rev. D49 (1994) 6228.

What can these states be?

 \square Potential Models before $D_{sJ}^{*+}(2317)$ predicted masses too high.

S. Godfrey and N. Isgur, Phys. Rev. D32 (1985) 189, S. Godfrey and R. Kokoski, Phys. Rev. D43 (1991) 1679.

□ After discovery of $D_{sJ}^+(2317)$ a class of potential models has some difficulty fitting all states and getting decay patterns right. R. Cahn and J. Jackson, hep-ph/0305012, S. Godfrey, hep-ph/0305012, P. Colangelo and F. De Fazio, hep-ph/0305140.

 \Box Perhaps with new potentials all charm, non-charm mesons can be fit.

 \Box Also QCD Lattice calculations are in trouble: the mass for a scalar $c\bar{s}$ is expected to be higher than that measured.

G. Bali,hep-ph/0305209.

 \Box Chiral symmetry models predict observed pattern: splitting of $D_{sJ}^{*+}(2317)$ and $D_{sJ}^{+}(2457)$ is about the same as $D_{s}^{+}(1969) - D_{s}^{*+}(2112)$. Predict many decay modes, including radiative decay of $D_{sJ}^{+}(2457)$. W. Bardeen et al., hep-ph/0305049.

What can these states be?

\Box Four-quark states or molecules:

T.Barnes, F. Close, H. Lipkin (hep-ph/0305025), Cheng and Hou hep-ph/0305038,K. Terasaki hep-ph/0305213, A. Szczepaniak hep-ph/0305060

 \Box Ordinary $c\bar{s}$ states still there to be found.

 \Box Expect in this case a large variety of new states with I=0 and I=1.

How can we decide?

 \Box Measure radiative decays.

 \Box Measure transitions with di-pion emission.

 \Box Find still more states.

 \Box Look for other charge states.

Conclusions and Outlook.

 \Box The BaBar discovery of a narrow D_s^+ state has opened a new window in particle physics.

 \Box This, and related discoveries, will have a large impact on the theory of charmed and beauty meson spectroscopy.

 \Box Lots of activity, both experimental and theoretical.