QCD at e^+e^- **Experiments**

Klaus Hamacher Bergische Universität Wuppertal & DELPHI Collaboration

Setting the Scene – The QCD Lagrangian

QCD Lagrangian – determined from $SU(3)_c$ invariance

Free parameters: coupling and quark masses

Aim: measure parameters and test properties of the QCD Lagrangian

- verify basic diagrams and their relative coupling strength \iff QCD Colour Factors \iff verify $SU(3)_c$ gauge group
- test quantum corrections (loops) causing asymptotic freedom & confinement \iff running of α_s (& quark-masses),
- study rich phenomenology of strong interaction physics

Models: PYTHIA, ARIADNE, HERWIG, APACIC++

Klaus Hamacher, QCD at e^+e^- Experiments: Setting the Scene

Setting the Scene – The e^+e^- Experiments

- $e^+e^- \rightarrow q\bar{q}$ experiments provide simplest strongly interacting initial state
- many generations of accelerators: ADA . . . LEPII
- recent results to cover ($\sqrt{s}\gtrsim 10~{\rm GeV}$): BABAR, BELLE, CLEO,(JADE) SLD, ALEPH, DELPHI, L3, OPAL

- B factories: $10^{\mathcal{O}(7)}$ events/experiment
- Z data: $\mathcal{O}(0.5 \rightarrow 4 \cdot 10^6)$ events/experiment "background free"; precise QCD studies even for "rare" events
- LEP II: $\mathcal{O}(10^4)$ events/experiment background: bremsstrahlung \rightarrow "Z-return" events, WW and ZZ events

Klaus Hamacher, QCD at e^+e^- Experiments: Setting the Scene

Outline

- Momentum spectra and multiplicity (inclusive, b quarks, gluons)
- Heavy quark fragmentation (b, c)
- The mass of the $b\ {\rm quark}$ and its running
- 4 jet angular distributions and colour factors
- Critical review of α_s from event shapes
- Measurement of the QCD β function
- Consequences for the gauge group of strong interactions
- Summary

The Charged Multiplicity

Multiplicity increase in $e^+e^- \rightarrow q\bar{q}$ due to coherent gluon bremsstrahlung off quarks

Consistent description of the energy dependence of the multiplicity by:

- fragmentation models
- MLLA (+ LPHD: $\#_{hadrons} \propto \#_{gluons}$) $\langle N_{ch} \rangle = K_0 \cdot \alpha_s (E_{cm})^{C_1} \cdot e^{\frac{C_2}{\sqrt{\alpha_s(E_{cm})}}}$
- higher order (3NLO) predictions.

Dependence on flavour composition small.

Momentum Spectra

Colour coherence limits gluon emission at small energies / large

$$\xi = -\ln x = -\ln \frac{2E_h}{E_{cm}}$$

Predicted by MLLA "limiting spectrum"

 $Coherence \rightarrow change \ of \ peak \ position$

 $\xi^*(E) \sim \sqrt{\log E}$

slower than expected from phase space

 $\xi^*(E) \sim \log E$

Multiplicity Difference of b and Light Quark Events

- Compare multiplicity of tagged heavy and light quark events
- Study energy dependence of multiplicity difference $\delta_{bl}(s) = N^b_{ch}(s) N^{uds}_{ch}(s)$

Measurements support QCD expectation \rightarrow coherence of gluon radiation

Multiplicity in Gluon Jets

Multiplicity increase in gluon jets due to coherent gluon bremsstrahlung off gluons.

$$\left| \begin{array}{c} \cos \theta^{2} \\ \cos \theta^{2} \\ \end{array} \right|^{2} \propto C_{A} \cdot \alpha$$

Expect increased multiplicity in gluon jets

s

$$\frac{N_{ch}^{\text{gluon jet}}}{N_{ch}^{\text{quark jet}}} = \frac{C_A}{C_F} = \frac{3}{4/3} = 2.25$$

Find in $q\bar{q}g$ events at PETRA \ldots LEP

$$rac{N_{ch}^{\mathrm{gluon \; jet}}}{N_{ch}^{\mathrm{quark \; jet}}} \sim 1.1
ightarrow 1.4$$

Small ratio is understood:

Coherence \rightarrow use " p_{\perp} like" scales, Biases due to 3 jet selection, Non perturbative / finite E effects

OPAL 7 g_{incl.} jets uds jets ₫ 6|^c 2 0 g_{incl}/uds jets 2 Jetset 7.4 Herwig 5.9 1.5 R _{g/q} Ariadne 4.08 AR-2 ····· AR-3 0.5 0 2 1 3

Rapidity y

Multiplicity of Three Jet Events

Measure topology dependence of the multiplicity of 3 jet $q\bar{q}g$ events at the Z

Theory considers:

- coherence $(p_{\perp}^2 \text{ scales})$ $N_{q\bar{q}g}^{ch} = N_{q\bar{q}}^{ch}(s_{q\bar{q}}, y_{cut}) + \frac{1}{2} \cdot N_g^{ch}(p_{\perp g}^2)$
- phase space (y_{cut}) restriction of qq system due to g jet

• Differential eqn. for multiplicity slopes $\frac{dN_{gg}(L')}{dL'} = \frac{C_A}{C_F} \left(1 - \frac{\alpha_0 c_r}{L}\right) \frac{d}{dL} N_{q\bar{q}}(L)$ $L = \log s / \Lambda^2 , \quad c_i = \text{const.}$ $\rightarrow \text{non-pert. integration const. for } N_q^{ch}$

Multiplicity of Colour Singlet gg Systems

From symmetric events $\Theta_1 = \Theta_2$ DELPHI obtains:

$$\frac{C_A}{C_F} = 2.221 \pm 0.032(stat.) \pm 0.047(exp.) \pm 0.058(hadr.c.) \pm 0.075(theo.)$$

Klaus Hamacher, QCD at e^+e^- Experiments: Multiplicity of gluon jets

XXIII PIC, Zeuthen, 28. June 2003 11

Heavy Quark Fragmentation

- Fragmentation functions specify energy transfer: partons \rightarrow hadrons
- Simple case heavy quarks
- Recent b fragmentation measurements

- partial/inclusive B reconstruction: high stat. precision $\sim 0.3\%$ good energy resolution $\mathcal{O}(10)\%$
- New average (weakly decaying B's): $\langle x_B \rangle = 0.715 \pm 0.003$
- Lund/Bowler ansatz for FF favoured Peterson ansatz disagrees.

Klaus Hamacher, QCD at e^+e^- Experiments: Heavy Quark Fragmentation

Interpretation of Heavy Quark Fragmentation

Observed FF is described by a convolution of a perturbative and a non-pert. part. $D_b^B(x) = \int_0^1 D_{pert}(z) \cdot D_{non-pert}(\frac{x}{z}) \frac{dz}{z}$ a Mellin transform $(\int dx x^{N-1} D(x))$ yields a simple product equation $\tilde{D}_b^B(N) = \tilde{D}_{pert}(N) \cdot \tilde{D}_{non-pert}(N) \rightarrow \text{solve for } \tilde{D}_{non-pert}(N)$

Backtransformation \rightarrow model-independent $D_{non-pert}(x)$

 $D_{non-pert}(x)$ can be universally applied

Use similar assumptions for perturbative calculations !

Double Inclusive b Fragmentation

 Study both B hadrons, measure double moments (SLD, Brandenburg et al.)

$$\begin{split} \tilde{D}_{ij}(\phi) &= \frac{1}{\sigma_B} \int x_{B_1}^{i-1} x_{B_2}^{j-1} \frac{d^3 \sigma}{dx_{B_1} dx_{B_2} d\cos \phi} dx_{B_1} dx_{B_2} \\ G_{ij} &= \frac{\tilde{D}_{ij}}{\tilde{D}_i \tilde{D}_j} \qquad \phi \text{ is } \angle \text{ between b's} \end{split}$$

- b mass regulates collinear singularity, save pert. prediction for G_{ij}
- Non-perturbative and large $\log E_{CM}/m_b$ terms cancel to all orders
- Measurement implies test of factorisation theorem (SLD)
- Allows new measurement of α_s (Brandenburg et al.)

Charm Fragmentation

- New precise charm frag. function CLEO (preliminary) $\sim 3fb^{-1}$ below $b\bar{b}$ threshold, $\sim 6fb^{-1}$ of $\Upsilon(4S)$ data $(x_p^D > 0.5)$
- Decays: $D^+ \to K\pi\pi$, $D^0 \to K\pi, K3\pi, D^{*+} \to D^0\pi$
- Excellent resolution $\Delta x \sim 0.006,$ high efficiency $\epsilon \sim 0.77$
- Pure charm fragmentation not influenced by B decays
- C fragmentation softer than b
- To be analysed like b data
- Slightly different x spectra for D^0, D^+, D^{*+} partly \rightarrow mass difference More important: resonance decays

Measurement of the b Quark Mass $m_b(M_Z)$

- Quarks bound inside hadrons \rightarrow masses known only to limited precision
- Assess masses via dynamical relations
- m_b : reduction of gluon bremsstrahlung

$$\propto \frac{m_b^2}{p_{\perp g}^2} = \frac{m_b^2}{M_Z^2} \cdot \frac{1}{y_{cut}} \sim 0.3\% \cdot \mathcal{O}(10)$$

• Besides pert. pole mass M_b define renormalised mass $m_b(Q)$ in $\overline{\text{MS}}$ scheme. This running mass absorbs loop corrections like $\alpha_s(Q)$.

Measurement:

- Compare b/inclusive ratio of jet rates/event shapes obs.
- b-identificaton using impact param. tag. purity 65-90%
- Corrections: acceptance, tag bias, hadronisation (partly neglected)

Theory: four independent calculations

- ALEPH: several shapes use R_3 , $\langle y
 angle$
- Brandenburg et al (SLD): several jet algos (assign syst. for discr.)
- Opal: T, M_h, B_w, y_3, C expoiting correlation btw. observables
- DELPHI 2003: R_3 Durham, Cambridge

Measurement of the b Quark Mass $m_b(M_Z)$

- Observe expected y_{cut} dependence.
- Recent improvements: understanding of hadronisation correction new important error: b mass in model overall → reduced uncertainty
- Theory error substantial: Mass ambiguity, renormalisation scale, $\Delta \alpha_s$
- Combined ADO/SLD result $m_b(M_Z) = 2.95 \pm 0.15 \pm 0.24_{hadc./theo} \text{ GeV}$
- Alternatively: flavour independence of α_s $\frac{\alpha_s^b}{\alpha_s^l} = 0.996 \pm 0.009$

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring $m_b(M_Z)$

The Running of $m_b(Q)$

 Compare LEP/SLD average ⇒ to b-mass from bound states:

 $m_b(m_b) = 4.24 \pm 0.11 \text{ GeV}$

- \Rightarrow running of the b-mass
- Soon improved measurements of m_b from leptonic B decays
- Tests RGE for the mass $\frac{\partial m}{\partial \ln Q^2} = -\gamma_m(\alpha_s) \cdot m(Q^2)$

mass anom. dimension

 γ_m

Ecos

contains loop corrections to b quark propagator

 $m_b(M_Z)$ measurement implies a successful test of QCD loop structure!

Initial gluon polarised, like any vector particle. Spin 0 or 2 case different. Initial analyses used LO theory; recent years NLO calculation.

Colour Factors from Four Jet Events

OPAL & ALEPH use (matched) NLO 4 jet calculation, inc. also 3 jet rate.

But : Correlations between C_A and C_F are large!

Klaus Hamacher, QCD at e^+e^- Experiments: 4 Jets and Colour Factors

Measuring α_s

Event Shape Observables

Event shapes observables measure the amount of gluon bremsstrahlung Sensitive to α_s (and QCD colour factors) Inensitive to electroweak physics.

- Infrared safe
- Collinear safe
- insensitive to non-perturbative effects.

Example Thrust:

$$y = 1 - T := 1 - \max_{|\vec{n}|=1} \sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| / \sum_{i=1}^{n} |\vec{p_i}|$$

Furtermore:

Jet-Masses, Jet-Broadenings, y_{cut} , . . .

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring $lpha_s$

The Procedure – Guide through the α_s Maze

Experiment

- Measure event shape distribution
- Correct detector acceptance/resolution, ISR, backgrounds . . .

Theory

- Calculate perturbative predictions \circ NLO α_s M.E.
 - NLLA
 - \circ matched NLO $\alpha_s/{\rm NLLA}$
- Correct for non-pert. hadronisation by
 o hadronisation models
 - \circ power corrections

Compare common level

- Fit α_s
- Determine experimental uncertainties
- Determine theoretical uncertainties

Next to Leading (Fixed) Order pQCD

• Except x_{μ} is optimised!

Next to Leading Log Approximation (NLLA) $R_y(y) = \int^y dy \,\mathcal{D}_y(y) = e^{\left(Lg_1(\alpha_s L) + g_2(\alpha_s L)\right)}$

- Resums leading & next to leading log. terms
- Use for small y, collinear rad., "2-jet region"
- Problem: $R_y(y_{\text{max}}) \neq 1$, $R'_y(y_{\text{max}}) \neq 0$

• Solution:

$$L \to L' = \frac{1}{p} \ln \left[\frac{1}{(x_L \cdot y)^p} - \frac{1}{(x_L \cdot y_{max})^p} + 1 \right]$$

Matching Fixed Order and NLLA

Aim: combine NLLA and $\mathcal{O}(\alpha_s^2)$ (MS scheme, $x_{\mu} = 1$) calculations. Avoid double counting:

 $R_{\mathcal{O}(\alpha_s^2)+NLLA} = R_{NLLA} + A \cdot \alpha_s + B \cdot \alpha_s^2 - \text{double counting}$ Problem: ambiguity \rightarrow perform matching in R(y) or $\log R(y)$.

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring α_s

For 18 observables,

- $\overline{\rm MS}$ scheme: ~ 10% scatter \rightarrow require additional theory error
- Using experimentally optimised scales: Consistent results $\sim 2\%$ scatter
- Observe correlation with theoretically motivated scales (ECH, PMS)

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring $lpha_s$

XXIII PIC, Zeuthen, 28. June 2003 25

Matched LLA/ $\mathcal{O}(lpha_s^2)$ Fits

Residual slope (?) between data and theory for Thrust

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring α_s

α_s Combination

LEP QCD Working Group:

Aim: average ADLO α_s & running (high energy data)

- Input: α_s values (using $\log R$ matching) + exp. uncertainties
- Work: Compare theory implementation, hadronisation corrections Define theory uncertainty Treat correlations

Output: $\langle \alpha_s(E) \rangle \pm \Delta_{exp.} \pm \Delta_{theo.}$

Problems observed:

- Z: α_s often depends on fit range ($\mathcal{O}(\alpha_s^2 | x_{\mu} = 1)$ remnant ?)
- Badly described observables obtain smallest error
- α_s downwards biased as $\Delta_{theo} \ \alpha_s \propto \alpha_s^3$
- negative weights \leftrightarrow correlations inaccurate

The Uncertainty Band

- Take reference theory with fixed $\alpha_s(M_Z)$
- Vary reference theory: Renormalisation scale $1/2 < x_{\mu} < 2$ Apply (or not) phase space condition: $2/3 < x_L < 3/2$, p = 1; 2Exchange $\log R$ vs. R matching
- Envelope defines uncertainty band
- allowed $\alpha_s(M_Z)$ variation in the band determines $\pm \Delta \alpha_s$
- Determine $\langle \alpha_s(M_Z) \rangle$ and iterate

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring $lpha_s$

α_s Combination of the LEP QCD Working Group

	LEP I	LEP II
α_s	0.1197	0.1196
\pm stat.	0.0002	0.0005
\pm sys. ex.	0.0008	0.0010
\pm had.	0.0010	0.0007
\pm theo.	0.0048	0.0044
\pm tot.	0.0049	0.0046
\pm tot.rel	$\sim 4\%$	

Klaus Hamacher, QCD at e^+e^- Experiments: Measuring α_s

XXIII PIC, Zeuthen, 28. June 2003 29

Power Corrections – The Dokshitzer-Webber-Ansatz

Parameterise unknown (analytical) behaviour of the physical strong coupling below the IRmatching scale μ_I by its universal mean value.

Leads to a power term ${\cal P} \propto 1/E_{
m cm}$

increasing the mean values

$$\alpha_0(\mu_I) = \frac{1}{\mu_I} \int_0^{\mu_I} \mathrm{d}k \, \alpha_s(k)$$

shifting the distributions

 $\langle y \rangle = \langle y_{\text{pert}} \rangle + c_y \mathcal{P}$ $\mathcal{D}_y(y) = \mathcal{D}_{\text{pert}}(y - c_y \mathcal{P})$

$$\mathcal{P} = \frac{4C_F}{\pi^2} \mathcal{M} \frac{\mu_I}{E_{\rm cm}} \left[\alpha_0(\mu_I) - \alpha_s(\mu) - \left(b_0 \cdot \log \frac{\mu^2}{\mu_I^2} + \frac{K}{2\pi} + 2b_0 \right) \alpha_s^2(\mu) \right]$$

Observable specifics are absorbed in c_y : $c_{1-T} = 2$ $c_{M_h^2/E_{vis}^2} = 1$... Power terms (i.e. $\alpha_0(\mu_I)$) depend on renormalisation scheme (in general \overline{MS}). Fit $\alpha_0(\mu_I)$ and α_s to mean values and distributions of event shapes

Klaus Hamacher, QCD at e^+e^- Experiments: Power Corrections

Power Corrections à la Dokshitzer-Webber

Klaus Hamacher, QCD at e^+e^- Experiments: Power Corrections

Power Corrections à la Dokshitzer–Webber ($\alpha_s \& \alpha_0$ Results) Mean Values

• JADE fits use data from $E_{\rm cm} = 14$ to $189 \,{\rm GeV}$:

• Means:

 $\alpha_s(M_Z) = 0.1187 \pm 0.0014 \pm 0.0001^{+0.0028}_{-0.0015}$ $\alpha_0(2 \,\text{GeV}) = 0.485 \pm 0.013_{\text{fit}} \pm 0.001_{\text{sys}}^{+0.065}_{-0.043}_{\text{th}}$

Distributions: $\begin{aligned} &\alpha_s(M_Z) = 0.1126 \pm 0.0005 \pm 0.0037^{+0.0044}_{-0.0030} \\ &\alpha_0(2\,\text{GeV}) = 0.542 \pm 0.005_{\text{fit}} \pm 0.032^{+0.084}_{\text{sys}-0.060}_{\text{th}} \end{aligned}$

• α_0 results from means and distributions only consistent within total error.

• $\alpha_s^{(\text{PowerCorrections})} < \alpha_s^{(\text{MonteCarlo})}$! \leftarrow light blue band: current LEP average

Klaus Hamacher, QCD at e^+e^- Experiments: Power Corrections

XXIII PIC, Zeuthen, 28. June 2003 32

Comparison of α_s Results from LEP

Running of α_s

 β

Asymptotic freedom & confinement \iff running of the QCD coupling $\alpha_s(E)$ Renormalisation Group Equation controls the running:

$$\frac{\partial \alpha_s}{\partial \ln Q^2} = \beta(\alpha_s) = -\alpha_s^2 \cdot \frac{\beta_0}{4\pi} \left(1 + \frac{\beta_1}{2\beta_0} \alpha_s + \cdots \right)$$

$$\frac{\partial \alpha_s^{-1}}{\partial \ln Q^2} = \frac{\beta_0}{4\pi} \left(1 + \frac{\beta_1}{2\beta_0} \alpha_s + \cdots \right)$$
function $\iff 0$

 \implies is influenced by all strongly interacting particles.

A measurement of β function implies model independent limits on hypothetical particles.

Renormalisation group invariant perturbation theory

Use the observable itself as expansion parameter

 \longrightarrow No dependence on renormalisation scale.

For a mean event shape $R\propto \langle y
angle /A_f\sim lpha_s$ require RGE:

$$\frac{\partial R^{-1}}{\partial \ln Q^2} = \frac{\beta_0}{4\pi} \left(1 + \frac{\beta_1}{2\pi\beta_0} R + \rho_2 R^2 + \dots \right)$$

 \rightarrow Allows to measure $\beta_R \approx \beta$ directly from a mean event shape, e.g. $\langle 1 - T \rangle$; Solve this RGE like the one for α_s , determine integration const. $\Lambda_R \iff \Lambda_{\overline{\text{MS}}}^{\text{QCD}}$

- Allows measurements of $\Lambda_{\overline{MS}}^{\text{QCD}}$ without freedom of renormalisation scale.
- RGI is numerically equivalent to ECH; RGI resums UV divergencies.
- Power corrections can be included in RGI theory.

Klaus Hamacher, QCD at e^+e^- Experiments: The β Function

RGI with power corrections

- Gives good description of the data small spread from 7 observables
- $\alpha_s(m_Z) = 0.1179$; spread 0.0020
- Power terms are compatible with zero!

Comparing Pure RGI to data

- Gives still a good description of the data
- $\alpha_s(m_Z) = 0.1201$; spread 0.0020
- Mean values can be described without hadronisation correction at 2% level using a theory without renormalisation scale freedom.

Power corrections are to large part missing higher order terms in $\overline{\mathrm{MS}}$ scheme

The measurement of the β -Function

 β_R is slope of 1/R vs $\log s$ From DELPHI $\langle 1 - T \rangle$: $\frac{\partial R^{-1}}{\partial \ln Q} = 1.38 \pm 0.05$ $n_f = 4.7 \pm 1.2$

Uncertainty due to power terms small! Include low energy data, extract β_0 :

 $\beta_0 = 7.86 \pm 0.32$

 $n_f = 4.75 \pm 0.44$ (using QCD expression)

Compare indirect measurement (via α_s): LEP event shapes:

 $\beta_0 = 7.67 \pm 1.63$

 R_{τ}, F_2, F_3, R_Z , event shapes . . . world data:

 $\beta_0 = 7.76 \pm 0.44$

Klaus Hamacher, QCD at e^+e^- Experiments: The eta Function

QCD + light gluinos excluded

The Gauge Group of Strong Interactions

the measurements of

- the QCD β -function
- the multiplicity of gluon and quark jets
- the 4-jet angular distributions

• . . .

strongly restrict the gauge group of the strong interaction to

 $SU(3)_c$

Summary

 e^+e^- experiments provide extensive precision tests of QCD

- Heavy quark fragmentation \rightarrow input for hadron colliders
- Consistent picture of the energy evolution from b factories to LEPII $\alpha_s \& \beta$ -function, m_b , inclusive distributions
- Absolute measurements of α_s to be improved \rightarrow NNLO calculation
- $SU(3)_c$ is experimentally identified as the gauge group of strong interactions