Latest News from SNO

Kevin Graham Queen's University

Physics in Collision June 26-28, 2003 Zeuthen, Germany

Neutrinos – What do we want to know?

- Verify flavour change
- Measure mass splittings/hierarchy
- Mixing angles
- •How many types? Sterile? Majorana?
- Measure individual mass eigenstates
- •CP violation?
- •Magnetic moment?

Solar measuring θ_{12} , Δm_{12}

Using the oscillation framework:

If neutrinos have mass:

$$\left|\nu_{l}\right\rangle = \sum U_{li} \left|\nu_{i}\right\rangle$$

For three neutrinos:

Solar Neutrinos

 $\Phi = 6.6 \times 10^{10} \, \text{cm}^{-2} \, \text{sec}^{-1}$

Experimental Results SAGE+GALLEX/GNO $\nu_e + 71 Ga \rightarrow 71 Ge + e^-$ Flux = 0.55 SSMHomestake $\nu_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$ Flux = 0.34 SSMKamiokande+Superkamiokande $\nu_x + e^- \rightarrow \nu_x + e^- \quad \sigma_{\mu\tau} = \frac{1}{6} \times \sigma_e$ Flux = 0.47 SSMSNO (CC 0.35) Flux = 1 SSM

The SNO Detector

12 m diameter Acrylic vessel

PMT Support -Structure (PSUP)

9438 Inward-Looking PMTs

91 Outward Looking PMTs (Veto)

Norite Rock

Neutrino Reactions in SNO

$$cc \quad v_e + d \rightarrow p + p + e$$

- Q = 1.445 MeV

- good measurement of v_e energy spectrum
- some directional info $\propto (1 1/3 \cos \theta)$

- v_e only

NC
$$v_x + d \rightarrow p + n + v_x$$

-Q = 2.22 MeV

measures total ⁸B v flux from the Sun
equal cross section for all v types

 $\textbf{ES} \quad v_x + e^- \rightarrow v_x + e^-$

- low statistics
- mainly sensitive to v_e , some v_{μ} and v_{τ}
- strong directional sensitivity

SNO Data Taking Phases

Past	Present	Future
High CC-NC correlation	Better CC-NC separation	NC uncorrelated to CC
Statistical separation (Energy, radius)	Statistical separation (Isotropy)	Independent channel
Single 6.25 MeV γ	Multiple γ s, 8.6 MeV	
Neutron capture on D	Neutron capture on Cl	$n + {}^{3}\text{He} \rightarrow p + t$
Phase I (pure D2O):	Phase II (dissolved salt):	Phase III (3He n counters):

What have we done so far?

The Pure D₂O Phase Dataset

- Livetime: 306.4 days (November 2, 1999 May 27, 2001) Day: 128.5 days Night: 177.9 days
- Energy Threshold: 5 MeV Kinetic
- Fiducial Volume Cut: 550 cm
- Total Number of Events after cuts: 2928 Neutron Bkg 78⁺¹²₋₁₂ Cherenkov Bkg 45⁺¹⁸₋₁₂

The data set is used for a hypothesis test of no neutrino oscillations by assuming no MSW distortion and comparing NC and CC. rates

Signal Extraction Results – Pure D₂O Phase

Flux Results – Pure D2O Phase $\Phi_e = 1.76^{+0.05}_{-0.05}(stat.)^{+0.09}_{-0.09}(syst.) \times 10^6 \text{ cm}^{-2}s^{-1}$ $5.3 \sigma \text{ effect}$ $\Phi_{\mu\tau} = 3.41^{+0.45}_{-0.45}(stat.)^{+0.48}_{-0.45}(syst.) \times 10^6 \text{ cm}^{-2}s^{-1}$ Neutrinos Massive

Constrained Fit for flavour change test $\Phi_{\text{SSM}} = 5.05^{+1.01}_{-0.81}$ $\Phi_{\text{SNO}} = 5.09^{+(0.44 \oplus 0.46)}_{-(0.43 \oplus 0.43)}$

Without Constraint

$$\Phi_{\rm SNO} = 6.42^{+(1.57\oplus0.55)}_{-(1.57\oplus0.58)}$$

Day/Night Asymmetry

Physics Interpretation: MSW Parameters

SNO Day and Night Energy Spectra Alone

Combining All Experimental and Solar Model information

region	χ²/dof	ϕ_{B} /SSM	A _e	$\Delta m^2 (eV^2)$	tan²θ	CL
LMA	57/72	1.16	6.4%	5.0×10 ⁻⁵	0.34	
LOW	68/72	0.98	5.9%	1.3×10 ⁻⁷	0.55	99.5%

What are we doing now?

solar *neutrino* problem neutrino parameters puzzle?

Salt Dataset

- Salt added to detector
- May 27, 2001 to October 10, 2002
- 503 days
- 288.8 neutrino live-days (57.4%)
- improved NC statistics
- improved CC-NC separation from isotropy
- \rightarrow improved measurement of CC/NC ratio
- → precision unconstrained result
- → improved day/night result

Reconstructed Event

-event vertex-event direction-energy-isotropy

Detector Calibration

Optics Energy **Event Reconstruction Neutron Capture Backgrounds**

Tools

8Li 252Cf U/Th Monte Carlo

Pulsed Laser 337nm to 620 nm 16N 6.13 MeV γ's 3H(p,γ)4He 19.8 MeV γ's <13.0 MeV β's neutrons 214Bi & 208Tl β - γ 's

Optical Measurements from Laserball

Optical Constants

laser at 6 wavelengths
scan through detector
D2O Attenuation
H2O+AV attenuation
PMT Angular Response
Rayleigh Scattering

Calibration used for -MC simulation -Energy calibration -Check systematics

wavelength (nm)

Energy Calibration

Energy Calibration

Energy Calibration

With Optical Constants:

Process data Calibrate MC energy scale Quality checks

Energy Calibration

- Prompt Time
- Detector State Corrections
- •Optical Correction to Centre
- •¹⁶N to set scale
- •MC table MeV/Hits
- •Energy Resolution Function

Angular Resolution

Fit to cos(θ)=u_{fit} • u_{gen}

electron MC gives nominal values

to verify MC and determine uncertainties

Angular Resolution

Fit to cos(θ)=u_{fit} • u_{gen}

Angular Resolution

Fit to cos(θ)=u_{fit} • u_{gen}

Neutrons in Salt

0<mark>6</mark>

Capture on ³⁵Cl ⇔ ³⁶Cl cascade •Multi-photon events ⇔isotropy •Energy peaks higher

$$n + {}^{35}CI \rightarrow {}^{36}CI + \Sigma \gamma$$
 (E $\Sigma \gamma$ = 8.6 MeV)

D2O Events

Proton Events

Neutron Distributions in Salt

Neutron Response

Factor of ~3-4 increase in stats

larger capture cross-sectionenergy reponse peaks higher

Systematics Include:

- energy scale and resolution
- vertex reconstruction
- source position
- ²⁵²Cf source strength
- burst selection
- background

Total ⇔Percent Level

Point Source Efficiencies Above 5.5MeV for Fiducial Volume < 550cm

Statistical Signal Separation Using Angular Information

Fit Result Uncertainties (Monte-Carlo)

	Variables	CC Stat. Error	NC Stat. Error	ES Stat. Error
D2O results Simulated Salt Phase Results	E,R, θ _{sun}	3.4%	8.6%	10%
	Ε,R, θ _{sun}	4.2%	6.3%	10%
	E,R,θ _{sun} ,Iso	3.3%	4.6%	10%
	R ,θ _{sun} , Iso	3.8%	5.3%	10%

Published D2O energy-unconstrained stat. Error was 24%

Simulations assume 1 yr of data with central values and cuts from D2O phase results

Salt Phase data

Higher E and capture σ reduces background problem

Event isotropy helps break signal covariances

Data is being analyzed with a blindness parameter added. We are Completing the final calibrations and will be removing the salt soon.

Sensitivity to Mixing Parameters

Bound on Sterile Neutrinos: Solar/Kamland data

0.6 $v_e \rightarrow (\cos \eta) v_x + (\sin \eta) v_s$ f_B = ⁸B Total Flux/SSM (BP00) 0.5Fit to $f_{\rm B}$ and η 0.4sin²n 0.3 χ^2 min: $\sin^2 \eta = 0, \ f_B = 1.00$ 0.2< 0.13 (1 σ) < 0.52 (3 σ) 0.1sin² η: Ο. 0.75

Bahcall, Gonzales-Garcia, Pena-Garay, hep-ph/0212147

1.25

B,total

1.5

1.75

Pure D₂O Phase:

Flavour Transformation Neutrinos Massive SSM working well

Combined v Results:

→ MSW Model → LMA Favoured Region

<u>Salt</u>:

Increased NC statistics – Additional Isotropy Separation Precision Fluxes with No Shape Constraint Improved CC/NC Measurement Day/Night and Spectral Shape →improved precision in MSW space

Next Phase: NCDs in shortly ³He counters event-by-event separation

Current and Future Prospects

- Homestake/GALLEX : completed
- Sage/GNO: running GNO 1 solar cycle
- SK: running (impressive turnaround)
- SNO: salt results pending next phase NCD's soon
- KamLAND: not just reactors...
- Borexino: scintillator target (⁷Be)
- Lens: coincidence events ¹⁷⁶Yb (pp-⁷Be)
- Clean: liquid neon (pp)
- Genius: elastic scattering HPGe (pp)
- MOON: inverse beta-decay ¹⁰⁰Mo (pp-⁷Be)
- HELLAZ: helium (pp-⁷Be)
- HERON: superfluid helium (pp-⁷Be)
- ICARUS: bubble chambers (⁸B)
- XMASS liquid xenon (pp-⁷Be)

Verify Flavour Change Evidence for Oscillation MSW Parameters Solar Physics

📅 The SNO Collaboration 🔤 🖊 😹

G. Milton, B. Sur Atomic Energy of Canada Ltd., Chalk River Laboratories

S. Gil, J. Heise, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia

> J. Boger, R.L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory

R.C. Allen, G. Bühler, H.H. Chen* University of California, Irvine

I. Blevis, F. Dalnoki-Veress, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky Carleton University

T.C. Andersen, P. Jagam, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang University of Guelph

J. Bigu, J.H.M. Cowan, J. Farine, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C.J. Virtue Laurentian University

Y.D. Chan, X. Chen, M.C.P. Isaac, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E Rosendahl, A. Schülke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A.S. Hamer, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory

J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey* National Research Council of Canada

J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B.T. Cleveland, X. Dai, G. Doucas, J.A. Dunmore,
H. Fergani, A.P. Ferrarris, K. Frame, N. Gagnon, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, G. McGregor, M. Moorhead, M. Omori, C.J. Sims, N.W. Tanner, R.K. Taplin, M.Thorman, P.M. Thornewell, P.T. Trent, N. West, J.R. Wilson University of Oxford

E.W. Beier, D.F. Cowen, M. Dunford, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, N. McCauley, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L Rusu, S. Spreitzer, R. Van Berg, P. Wittich University of Pennsylvania

> R. Kouzes Princeton University

E. Bonvin, M. Chen, E.T.H. Clifford, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, K. Graham, A.L. Hallin, W.B. Handler, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat, T.J. Radcliffe, B.C. Robertson, P. Skensved Queen's University

D.L. Wark Rutherford Appleton Laboratory, University of Sussex

R.L. Helmer, A.J. Noble TRIUMF

Q.R. Ahmad, M.C. Browne, T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, S.R. Elliott, J.A. Formaggio, J.V. Germani,
A.A. Hamian, R. Hazama, K.M. Heeger, K. Kazkaz, J. Manor,
R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K.K. Schaffer,
M.W.E. Smith, T.D. Steiger, L.C. Stonehill, J.F. Wilkerson
University of Washington