

B. Golob, University of Ljubljana

From tree-level B decays

> exclusive mainly B → D*lv (higher stat., lower th. uncertainty); also B → Dlv as check

> inclusive
total s.l. width + moments
of differential distributions

> exclusive
B → π,ρ,ω,η lv;
HQS not helpful, high th.
uncertainty

> inclusive total s.l. $b \rightarrow ul_{v}$ width; limited phase space, larger th. uncertainty than $b \rightarrow cl_{v}$

B. Golob, University of Ljubljana

$$|V_{cb}| = (41.9 \pm 1.1 \pm 1.8) \times 10^{-3}$$

exp. $\mathcal{F}(1)$

B. Golob, University of Ljubljana

|V_{cb}| from inclusive decays

B. Golob, University of Ljubljana

|V_{cb}| from inclusive decays

|V_{cb}| from inclusive decays

HFAG Winter'03 average

using world average $\Gamma_{s1} = (0.434 \pm 0.008) 10^{-10} \text{ MeV}$

... (some measurements not yet
 included)

and combining different measured moments, also 3rd (sensitive to $O(1/m_b^3)$, multiparameter fits):

(C.W.Bauer et al.,PRD67,054012(03); M.Battaglia et al.,PLB556,41(03))

$$|V_{cb}| = (41.4 \pm 0.7 \pm 0.6) \times 10^{-3}$$

exp. th.
exp.: Γ_{s1} , $\overline{\Lambda}$, λ_1 , ρ_1 , ρ_2
th.: α_s , $O(1/m_b^4)$

|V_{ub}| from exclusive decays

Measurements of $Br(B \rightarrow X_u ln);$ several measurements exist: BaBar, Belle, Cleo covering $B \rightarrow \pi^{\pm}, \pi^0, \rho^{\pm}, \rho^0, \omega, \eta lv$

- > similar as b → clv, but in limited interval of q² (Cleo, πlv, ρlv) p*₁,E₁ (Belle, ωlv), (BaBar, ρlv)
- > fit to obtain yield
 (use isospin relations to
 connect π(ρ)[±]lν and π(ρ)⁰lν)

(C.Schwanda,Belle,CKM Workshop,Durham'03)

|V_{ub}| from exclusive decays

(L.Gibbons,Cleo, CKM Workshop,Durham'03)

B. Golob, University of Ljubljana

|V_{ub}| from inclusive decays

(plots from M.Luke,CKM Workshop, Durham'03)

- Semileptonic width $b \rightarrow u l v$ sensitive to V_{ub} in analog way as $b \rightarrow c l v$ sensitive to V_{cb} ;
- Variables separating
 b → ulv from b → clv:
 > lepton energy E₁;
 > hadronic inv. mass M_x;
 > leptonic inv. mass q²;

Number of measurements using different individual variable or combination of those.

B. Golob, University of Ljubljana

B. Golob, University of Ljubljana

|V_{ub}| from inclusive decays

From B_{d,s} oscillations

B. Golob, University of Ljubljana

B_d oscillations

B. Golob, University of Ljubljana

Amplitude method:

(Aleph, CERN-EP-2002-16)

$$P_{u,m} = \frac{1}{2} \Gamma_s e^{-\Gamma_s t} \left[1 \pm A \cos(\Delta m_s t) \right]$$

instead of Δm_s free parameter, fit A at fixed value of $\Delta m_s \rightarrow A(\Delta m_s)$; no oscillations: A=0; oscillations at given Δm_s : A=1 Δm_s excluded @95% C.L. where $A(\Delta m_s)+1.645\sigma_A < 1$

B. Golob, University of Ljubljana

B_s oscillations

…is one of the angles of UT… ☺

measured in

b → ccs B → J/ΨK_s b → ccd

 $B \rightarrow D^+D^-$

b → sss B → φK_s

HFAG, winter'03

...is another angle of UT...

...but more difficult to access than $\phi_1!$

measured in b \rightarrow uud B $\rightarrow \pi^+\pi^-$

significant

 $sin2\phi_2(\alpha)$ from $B \rightarrow \pi\pi$

Standard fit: use measured observables and th. parameters to constrain the region in $(\overline{\rho}, \overline{\eta})$ plane (CKM Fitter group, http://ckmfitter/in2p3.fr) Inputs(some): **Experimental** Theoretical $|V_{ud}|$, $|V_{us}|$, $|V_{ub}|$, $|V_{cb}|$ $\eta_{\rm B}$, $f_{\rm Bd}/B_{\rm Bd}$, ξ , B_{κ} ,... ε_{κ} , Δm_{d} , Δm_{s} , $\sin 2\phi_{1}$, m_{t} ,... Rfit approach: theoretical uncertainties \leftrightarrow constant likelihood Minimize $\mathcal{L}(y_{\text{mod}}) = \mathcal{L}_{\exp}(x_{\exp} - x_{theo}(y_{\text{mod}})) \cdot \mathcal{L}_{theo}(y_{\text{mod}})$ and compute CL. nice plots

UT constraints

(CKM Fitter group, http://ckmfitter/in2p3.fr)

UT constraints

how about $\sin 2\phi_2$? constraint determines arcs through $(\bar{\rho}, \bar{\eta}) = (0,0)$ and (1,0) with center and radius depending on ϕ_2 ;

B. Golob, University of Ljubljana

 V_{ud} : 5x10⁻⁴ accuracy, theoretically limited, PIBETA V_{HS} : unitarity OK, disagreement in K_{e3} (E865), KLOE, NA48; V_{ch} : excl. limited by $\mathcal{F}(1)$, moments will improve th.ambig.; V_{uh} : q² dependence starting (Belle,Cleo); inclusive M_x , q² will be improved (Ba/lle); th. ambiguities resolved -through tests of models (exclusive); -through moments measurements (b \rightarrow s γ); excl./incl. disagreement? V_{td}, V_{ts} : Δm_d already very precise, also improvement on τ_B ; Δm_s important constraint on UT, domain of D0, CDF; $sin2\phi_1$: real precision measurement, NP could be seen by Ba/lle (e.g. ϕK_{s}); $sin2\phi_2$: just started, although complicated, will give important constraint on UT;

% of current error on $V_{ub},\ sin2\phi_1$ (400fb^-1)

 V_{us}

V_{ud}

V_{ud}, V_{us} summary

- nucl. β decays (1±5x10⁻⁴) limited by th. uncertainty;
- important check expected from $\pi\beta$ decays with $\sim 1/2$ error;

- new measurement by E865 vs. average of older, systematics under better control?
 - new measurements coming;

B. Golob, University of Ljubljana

$$V_{cb}$$
 from $B \rightarrow D^* l v$

W reconstruction $q^2 = (p_1 + p_v)^2$ (Z⁰) p_{miss} (+ MC corrections) $\sigma(w) \sim 0.10;$

(Aleph, PLB395, 373(97))^{0.2} backup slide ...or $q^2 = (p_B - p_{D*})^2$ σ(w)~0.03; also D** (Y(4s)) bckg. suppression

Soft pion Efficiency 1.1 1.3 1.2 1.4 ≻ *F*(w) w parametrization; single (slope) parameter ρ^2 $F(w) = F(1)K(w) \left(1 - 8\rho^2 z + ... + O(z^4)\right)$ $\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}-\sqrt{2}}$ (I.Caprini et al., Nucl.Phys.B530,153(1998))

(a)

Efficiency

0.15

0.05

0.75

0.50

0.25

ALEPH

• $D^0 \rightarrow K^-\pi^+$ • $D^0 \rightarrow K^-\pi^-\pi^-$ • $D^0 \rightarrow K^0\pi^-\pi^-$

B. Golob, University of Ljubljana

 $Br(\overline{B^0} \rightarrow D^{*+}] \overline{v} = (4.70 \pm 0.13 \pm 0.34)\%$

Syst. error dominated by D** w distribution modeling (± 5.1% on $V_{cb})$

Two narrow states, $D_1 \& D_2^*$ (1+,2+) well established Br(B $\rightarrow D_2^* |v\rangle / Br(B \rightarrow D_1 |v) < 0.6 @95\%$ CL (LEP,CDF,SLD,CERN-EP/2001-050)

agreement with HQET when O(1/m_c) corrections taken into account;
use such model for form factors and vary relevant parameters in the range consistent with experimental results;

- syst. error is the max. difference from central value when $\mathcal{F}(1)V_{cb}$ measurement repeated for each parameter variation;

Moments from BaBar

predicted dependence with $\lambda_1, \overline{\Lambda}$ as measured at p*=1.5 GeV

theoretical error similar to experimental

(N.Uraltsev,CKM Workshop,Durham'03)

new results expected

backup slide

B. Golob, University of Ljubljana

V_{cb} inclusive from Belle

Lepton spectrum on semileptonic side: (p*>0.6 GeV, extrap. to full interval)

(Belle,DPF'03)

backup slide

(L.H.Wilden,K.R.Schubert,BaBar,CKM Workshop,Durham'03)

- > B $\rightarrow \pi^{\pm}, \pi^{0}, \rho^{\pm}, \rho^{0}, \omega \text{ ev}; 50 \text{ fb}^{-1};$
- ➤ two E₁ regions: 2-2.3 GeV (b → clvbckg.), 2.3-2.7 GeV (continuum bckg.);
- > $|\cos\theta_{BY}| < 1.1$, Y=p+l, rejects wrong comb.;
- > continuum suppression (NN);
- > isospin relations: $\Gamma(B^0 \rightarrow \rho^- e^+ v) = 2\Gamma(B^+ \rightarrow \rho^0 e^+ v)$, $\Gamma(B^0 \rightarrow \pi^- e^+ v) = 2\Gamma(B^+ \rightarrow \pi^0 e^+ v)$ quark model relation: $\Gamma(B^+ \rightarrow \rho^0 e^+ v) = \Gamma(B^+ \rightarrow \omega e^+ v)$
- > fit ΔE=E_{had}+E₁ +p_{miss}-E_{beam} and M_{had}=m(ππ(π)) (only ΔE for π modes)
 9 parameters: Br(B → ρ/ωlν), Br(B → πlν),
 b →ulν feeddown (norm. in two E₁ regions)
 inclusive (parton level calc. with param. from B → X_sγ) + expected reson.
 b →clν (norm. in each channel)
 > extrapolate to entire E₁ using 5 different form factors (LQCD, sum
 rules, quark models, HQET (relates B and D semil. modes))
 Br(B → ρ⁻e⁺ν)=(3.29±0.42±0.47±0.55)10⁻⁴
 stat. syst. th.
 largest single contrib.
 -feed-down modeling;

-detector simul. (v recon.)

B. Golob, University of Ljubljana

Physics in Collision 2003, Zeuthen

values for diff. form f.

backup slide

from Br to V_{ub} :

>to extrapolate partial Br in limited momentum range to full range →
need b → ulv model: parton level convoluted with shape function
Fermi motion);

$$F(k_{+}) = N(1-x)^{a} e^{(1+a)x} \qquad x = \frac{k_{+}}{\overline{\Lambda}} \le 1$$

(F.De Fazio,M.Neubert, JHEP06,017(99)) (A.Sugiyama, Belle, Moriond'03)

Belle hadronic mass and q²

backup slide

B. Golob, University of Ljubljana

Physics in Collision 2003, Zeuthen

more precise $b \rightarrow s\gamma$ different methods – th. consistency

backup slide

B oscillations summary

Summary:

$$\Delta m_d = 0.502 (1 \pm 0.012) \text{ ps}^{-1}$$

Ba/lle:300fb⁻¹ σ~0.04% τ_B limiting factor; (simultaneous fit);

$$\Delta m_s < 14.4 \text{ ps}^{-1} @95\% \text{ C.L.}$$

next test of SM in CKM fits; Tevatron domain until LHC; e.g. D0 5σ sign. w/ 2fb⁻¹ $@\Delta m_s \sim 17 ps^{-1};$ CDF needs $O(10^3) B_s \rightarrow D_s^{(*)} n\pi$ for same;

 $F_{Bd}\sqrt{B_{Bd}} \sim \pm 15\%$ in CKM fits $F_{Bs}\sqrt{B_{Bs}} \sim \pm 15\%$ $\xi \sim \pm 6\%$

Ljubljana Physics

Physics in Collision 2003, Zeuthen

B. Golob, University of Ljubljana

From B_{d,s} oscillations

 R_t can be constrained using Δm_d

$$R_{t} = \sqrt{(1-\overline{\rho})^{2} + \overline{\eta}^{2}} = 0.85 \left[\frac{230MeV}{F_{Bd}\sqrt{B_{Bd}}} \right] \sqrt{\Delta m_{d}} \sqrt{\frac{0.55}{\eta_{B}}} \sqrt{\frac{2.34}{S_{0}(m_{t})}} \left[\frac{0.041}{|V_{cb}|} \right]$$

largest uncertainty measured

or using $\Delta m_d / \Delta m_s$

$$R_{t} = 0.86 \sqrt{\Delta m_{d}} \sqrt{\frac{18.4 \, ps^{-1}}{\Delta m_{s}}} \begin{bmatrix} \frac{\xi}{1.18} \end{bmatrix} \qquad \xi = \frac{F_{Bs} \sqrt{B_{Bs}}}{F_{Bd} \sqrt{B_{Bd}}}$$

measurement source of th. uncertainty

B. Golob, University of Ljubljana

B. Golob, University of Ljubljana

 ϕ_{2eff} depends on $\delta,~\phi_3,~\phi_2$ and |P/T|

 $\pi = \phi_1 + \phi_2 + \phi_3 \rightarrow \phi_{2eff}$ depends on δ , ϕ_1 , ϕ_2 and |P/T|

penguin amplitudes $B \rightarrow K^+\pi^-$ and $B \rightarrow \pi^+\pi^-$ are equal \rightarrow limits on |P/T| (~0.3); considering all interval of δ values one can obtain interval of ϕ_2 values;

isospin relations can be used to constrain δ (or better to say $\phi_2 - \phi_{2eff}$);

backup slide

UT constraints

Comparison of V_{ub} values theoretical uncertainty: constant C.L. exclusive/inclusive consistentcy

```
V_{ub}^{excl} - V_{ub}^{lepton} = 0.86 \pm 0.28 \pm ???exp. uncorr.th.
```


(H.Lacker, FPCP'03)

(A.Hoecker et al., Eur.Phys.J.C21, 225(01)) Th. quantities - "reasonable range", not statistically distributed, frequentist approach; th. predictions, depending on $\chi^{2} = -2 \ln \mathcal{L}(y_{\text{mod}}) \qquad \text{model parameters } y_{\text{mod}}$ $\mathcal{L}(y_{\text{mod}}) = \mathcal{L}_{\exp}(x_{\exp} - x_{theo}(y_{\text{mod}})) \cdot \mathcal{L}_{theo}(y_{QCD})$ knowledge on th. para. $y_{QCD} \in y_{mod}$ \rightarrow allowed range of th.param. $\mathcal{L}_{theo} = \begin{cases} 1, & y_{QCD} \in R \\ 0, & v_{QCD} \notin R \end{cases}$ uniform $\mathcal{L}_{theo} \neq uniform p.d.f.$ $\mathcal{L}_{theo}(|V_{ch}|^4) = 1, \quad |V_{ch}| \in \mathbb{R}$ $p.d.f.(|V_{ch}|) = konst. \Rightarrow p.d.f.(|V_{ch}|^4) \propto |V_{ch}|^{-3/4}$

minimization:

$$\chi^2 = -2\ln \mathcal{L}(y_{\rm mod}) \Longrightarrow \chi^2_{\rm min;y_{\rm mod}}$$

CL built from MC simulations; generation of pseudo exp. with optimal y_{mod} using \mathcal{L}_{exp} ;

B. Golob, University of Ljubljana