SGV and ZVTOP

Simulation Session, 15 Nov. 03 Tobias Haas (with V. Adler and P. Luzniak) DESY/F1

Introduction

- Goal:
 - Optimization of design parameters for VXD:
 - Support, sensor thickness, overlaps, layer spacing...
 - Special considerations for specific technologies: MAPS, CCD, DEPFET

Placement of readout

• Power, etc.

Steps

First

- Explore many configurations quickly
- Moderate Accuracy
- Full physics capabilities
- Second
 - Verify results with a high precision tool

Þ SGV

Optimization Parameters

• What should be the purity optimization (b bkgr) 0.9 • • • parameters? 0.8 0.7 • e.g. Tagging с 0.6 Efficiency... 0.5 $E_{CM} = 500 \text{ GeV}$ 0.4 • ... or effective error S. Xella-Hansen et al. 0.3 LC-PHSM-2003-061 on some physics 0.2 ^L₀ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 process? efficiency Zº/y •?M? /VD Meeting, 11/11/2003, Tobias Haas, DESY jet jet f, f,

Detector Optimization using a Complete "Toy" Analysis

(ZVTOP)

- Requirements:
 - Physics Generators
 - Fast Simulation (SGV)
 - Reconstruction/Analysis Suite
 - Tracking
 - EFOs

0...

- Jet Finders
 Vertexing
- Flavor Tagging

Ties Behnke Integration of Simulation/Reconstruction/Analysis

... while waiting ...

- V. Adler has latched b-tagging used in Brahms onto SGV
- Not a completely trivial procedure:
 - Refit the resolution function to match the data set
 - A number of numerical issues (mostly evaluation of integrals)
 - Extend range of "Joint-Probability" tag to cover impact parameters significances up to 200
 - Tune the definition of which tracks enter into the ZVTOP procedure
 - ... get all coordinate transformations right!

B-tagging

- 4 algorithms classify jets:
 - Impact parameter joint probability tag
 - "tear down" vertex finder
 - "most significant" tracks in the jet
 - ZVTOP
- NN gives three tagging outputs
 - B tag
 - C tag
 - B/C distinction tag

Initial Results (shown in Amsterdam by V. Adler)

c-tag (NN-output)

actual problem:

NN-output does not describe jet flavours well ⇒check SGV-input w.r.t. BRAHMS

*) Thanks to S.M. Xella Hansen for providing the ntuples.

Remarks

- Generally, there is good agreement between BRAHMS and SGV ...
- ... but still small discrepancies.
- Possible reasons:
 - SGV precision is limited:
 - Only cylindrical/planar geometries
 - B-tagging NN may have to be retrained
- However, may still go ahead and use this for analysis
 - H branching fractions in e⁺e⁻? ZH? qqXY (by P. Luzniak)

Measurement of SM Higgs branching ratios

	$\sigma(fb)$	events expected (500 fb^{-1})	events simulated
Signal:			
$H \rightarrow b\overline{b}$	23	11 500	10 000
$H \to WW^*$	27	13 500	10 000
$H \to Z Z^*$	3.6	1 800	5 000
$H \to c \overline{c}$	1.4	700	5 000
H ightarrow gg	2.0	1 000	5 000
H ightarrow au au	2.0	1 000	5 000
Background:			
$e^+e^- \rightarrow W^+W^-$	7 690	3 845 000	1 927 500
$e^+e^- \rightarrow q\bar{q}$	11 230	5 615 000	2 812 500
$e^+e^- \rightarrow t\bar{t}$	575	287 500	145 000
$e^+e^- \rightarrow Z^o Z^o$	652	326 000	162 500

 $E_{CMS} = 500 \ GeV$, $M_{Higgs} = 140 \ GeV$. Following method published by: M. D. Hildreth, T. L. Barklow, D. L. Burke Phys. Rev. D 49 3441(1994)

Paweł Łużniak

Measurement of SM Higgs branching fractions and VXD optimization

4

Finally: Use for Detector Optimization Studies:

Results				
	MAPS 50 μm	MAPS 300 μm without layer 1		
$\frac{\sigma(\sigma_{tot} \times \Gamma(H \to b\overline{b}))}{\sigma_{tot} \times \Gamma(H \to b\overline{b})}$	2.8 %	2.8 %		
$\frac{\sigma(\sigma_{tot} \times \Gamma(H \to c\bar{c}))}{\sigma_{tot} \times \Gamma(H \to c\bar{c})}$	29 %	36 %		

Note: Result is compatible with results by T. Kuhl using SIMDET

Summary

- A first important analysis tool (B-tagging à la ZVTOP) is now available with SGV.
- Results have been carefully cross checked with full simulation/standard analysis in BRAHMS.
- Has been submitted to M. Berggren (author of SGV) to be available as a general facility.
- First results on Higgs branching fractions show the usefulness of the tool.
 - e.g. Full power of vertex detector (5 very thin layers) does not matter for B tagging but important for charm.

