BAEM ENERGY MEASUREMENT based on RADIATIVE RETURN EVENTS

H. Jürgen Schreiber and Helge Todt

- INTRODUCTION
- METHOD and ist DEMONSTRATION
- PROBLEMS
- BACKGROUND PROCESSES
- PRECISION
 - statistical errors
 - systematic errors
- QUESTIONS not attacked

INTRODUCTION

Basic goal required by physics at LC

MEASUREMENT of the Luminosity Energy Spectrum

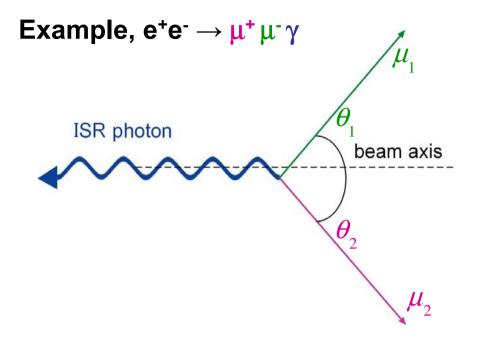
- mass of top quark $\leq 50 \text{ MeV}$
 - essential for fixing SUSI parameters

4 new quantities should be measured with high precision:

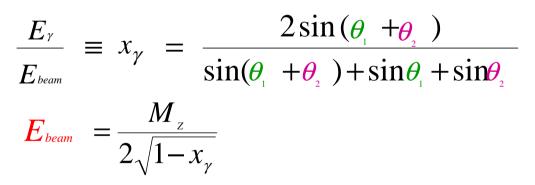
- 1. Bhabha ($e^+e^- \rightarrow e^+e^-(\gamma)$) acollinearity angle $\rightarrow E_b^+ - E_b^-$ distribution
- 2. Beam energy jitter
- 3. Absolute beam energy
- 4. Shape of beam spectrum

 $\rightarrow E_b^+ + E_b^-$

- WISRD (downstream synchr. radiation spectrometer)
- Alternative methods


(see e.g. this meeting)

But, independent determination of beam energy resp. cms_energy \sqrt{s} on event-based method


radiated return events

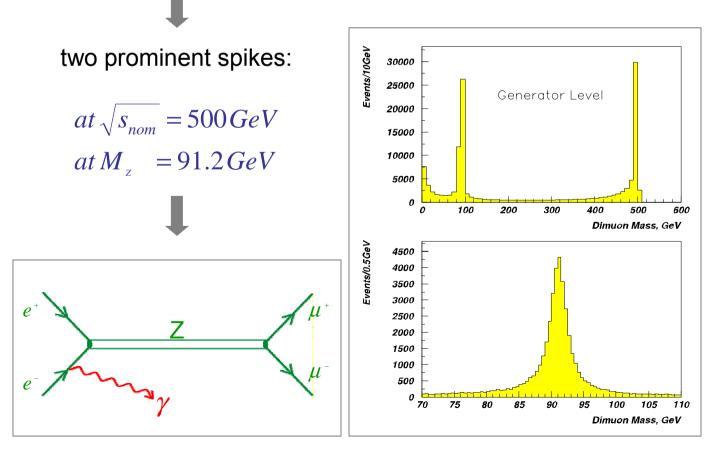
 \rightarrow cross check

Radiative return events

For coplanar muons (3-body kinematics),

Ebeam is derived from the very precisely known Z mass gives an independent measure for each IP

or $\sqrt{s} = 2E_{h}$ (by definition $E_{h}^{-} \equiv E_{h}^{+}$) In our example, we determine \sqrt{s}


DEMONSTRATION of **METHOD**

Ass: $e^+e^- \rightarrow \mu^+\mu^-\gamma$ at $\sqrt{s_{nom}} = 500 \, GeV$ and $\int Ldt = 100 \, fb^{-1}$

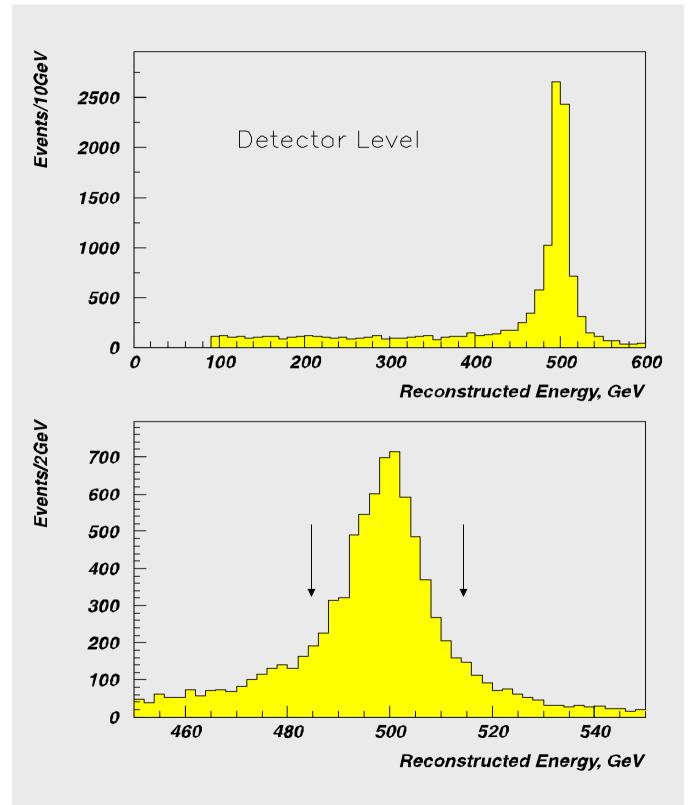
long-term measurement (over weeks or even months)

Aim: $\Delta E_b / E_b \le 1 \cdot 10^{-4}$ *i.e.* $\Delta E_b \le 25 MeV$ for $E_b = 250 GeV$

Generated 130 400 events $e^{}_{}e^{}_{} \rightarrow \mu^{}_{}\mu^{}_{}(\gamma)$

TESLA Detector Simulation Program (SIMDET)

<u>Aim</u> is to select coplanar $\mu^+\mu^-\gamma$ events with <u>one and only one hard ISR photon</u>

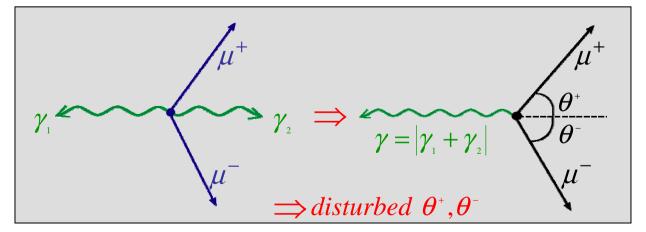

 $(\longrightarrow$ usually, it travels along the beam pipe)

and the muons are <u>back-to-back</u> in the plane transverse to the beam

Requirements: $-only1\mu^{+} and 1\mu^{-} \text{ (well measurement)}$ $-|p_{x}^{+} + p_{x}^{-}| < 4 \text{ GeV}$ $-|p_{y}^{+} + p_{y}^{-}| < 4 \text{ GeV}$ $-|p_{z}^{+} + p_{z}^{-} + p_{z}^{\text{miss}}| < 1 \text{ GeV}$ $-|E^{+} + E^{-} - \sqrt{s_{nom}}| < 2 \text{ GeV}$ - no photon in detector $Apply \frac{M_{Z}}{\sqrt{1 - x_{\gamma}}} = \sqrt{s_{meas}}$

with $x_{\gamma} = fkt(\theta^{+}, \theta^{-})$

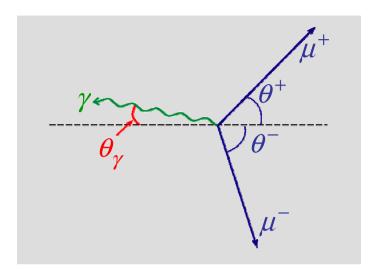
to extract $\sqrt{s_{meas}}$


From events close to $\sqrt{s_{nom}}$

determine cms-energy resp. Ebeam

-In our case (for simplicity), all events within

Problems: which limit precision on $\sqrt{S_{meas}}$


a) besides the (wanted) 1 ISR photon events

In our example: ~20% of the events selected:

 $\geq 2\gamma's \quad (with \ E_{\gamma} > 1 GeV)$

b) events with 1 hard ISR photon but with $\theta_{\gamma} \neq 0$ and not in detector acceptance:

aim: improve selection procedure
and / or
correct by proper ISR simulation
(⇒ uncertainties on ISR modelling)

BACKGROUND PROCESSES

might mimic $\mu^+\mu^-\gamma$ signal events:

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\mu^{+}\mu^{-}(\gamma)$$

$$\rightarrow \tau^{+}\tau^{-} \rightarrow \mu^{+}\mu^{-}\nu^{x}_{s}(\gamma)$$

$$\rightarrow W^{+}W^{-} \rightarrow \mu^{+}\mu^{-}\nu'_{s}(\gamma)$$

(huge σ) (large σ) (large σ)

preliminary studies: almost all can be removed

PRECISION

A) Statistical errors

for 100 fb $^{-1}$:

• $\mu^+\mu^-\gamma \rightarrow \Delta E_{\mu} \cong 21 \ MeV$

if also $\mu^{+}\mu^{-}\gamma \rightarrow$ events with the γ detected (H. Todt)

 $\rightarrow \Delta E_{_{b}} \cong 18 \; MeV$

(compare with 25MeV total error)

• $q \overline{q} \gamma \rightarrow \Delta E_{_{b}} \cong 5 MeV$

(plus new systematic uncertainties)

• $e^+e^-\gamma \rightarrow$ events are expected to have worse pecision due to extra background

• $\tau^{+}\tau^{-}\gamma \rightarrow \Delta E_{_{b}}(\geq)\Delta E_{_{b}}(\mu^{+}\mu^{-}\gamma)$

(plus some extra sytematic uncertainties)

B) Systematic errors

(estimates from LEP II studies)

• QED modelling (ISR, FSR, interference)

 $\Delta E_{b} \cong 3 MeV$

θ resolution / θ bias
 (length to radius ratio of detector)

if $\tan \theta$ is biased by $\pm 0.5 \cdot 10^{-3}$ $\Rightarrow \quad \Delta E_b \cong 22 \, MeV$

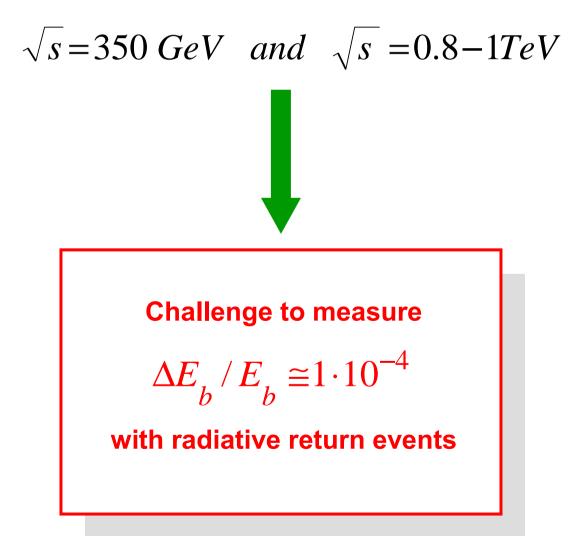
Background events

$$\Delta E_b \cong 2 \, MeV$$

• Z° mass $\Rightarrow \Delta M_z = 2.2 \, MeV$ $\Rightarrow \Delta E_b \cong 4 \, MeV \, at \, \sqrt{s} = 400 \, GeV$ (less at smaller \sqrt{s})

• Quark fragmentation

$$\Rightarrow \Delta E_b \cong 4 MeV$$
• Fitting procedure


$$\Rightarrow \qquad \Delta E_b \cong 1 - 2 \, MeV$$

POINTS TO BE DISCUSSED

-Beamstrahlung

-Forward tracker needed to improve θ resolution ? (*at higher* $\sqrt{s} = 500 \ GeV$)

-Studies at e.g.

