Energy spectrometer cavity BPM

Royal Holloway, University of London S. Boogert, G. Boorman University of Cambridge M. Slater, M. Thomson & D. Ward University College London

D. Attree, F. Gournaris, A. Lyapin, B. Maiheu & M. Wing

Threshold physics

- ILC will be a precision machine
 - Energy measurement corner stone for <500GeV physics
 - 10 MeV to 50MeV precision required
- ILC baseline 4 magnet chicane
 - 5mm deflection at mid chicane
 - 10s nm BPM resolution required

Important technology for the whole ILC beam delivery system

Beam position monitors (BPMs)

- Beam position monitors essential diagnostic for accelerators
 - Beam orbit in accelerator
 - Specialist applications such as energy spectrometer
- Many different varieties exist
 - Operate via electromagnetic interaction with structure placed around the beam
 - Button (1mm 10μm)
 - Stripline (100 μm 1 μm)
 - Resonant cavity (1 μm 20 nm)
- Resonant cavity
 - Beam passage sets up EM standing wave in structure
 - Voltage in TM₁₁₀ Mode depends linearly on beam position in cavity
 - Microwave radio frequency signal read out via waveguide and receiver electronics

SLAC End Station A

SLAC End station A

- Plan to install Cu prototype in Jan/Feb 07
 - Simple mover calibration system
- Continuous analysis & improvement of ESA BPM data
 - BPM resolution ~200-700nm
 - Systematic drifts of ~500nm

SLAC linac cold BPM prototypes

Cavity design

- New S-band cavity design
 - 2.88 GHz, Q_{ext} ~2000, τ =250 ns, σ ~10-20nm
- Aluminium 1st prototype finished
 - First tests positive, small monopole coupling
- Start copper vacuum prototype next week

Electronics design

Calibration scheme

Simple calibration system

•Components defined (diodes a bit of a problem)

KEK

KEK ATF(2)

KEK ATF(2)

- World's most advanced BPM system
 - UK collaboration leading the nanoBPM physics program and analysis
 - Best resolution ~15nm!
- ATF2 cavity system
 - Worlds largest number of high resolution cavity BPMs
 - AL's Electromagnetic design
 - Analysis based on WP9 developments
- Spectrometer specific measurements
 - Long term stability (>4 hours)
 - Tilt resolution
 - Multi-bunch performance

Typical runs ~few hours

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Simulation and integration

- Magnets critical for spectrometer performance
 - Design & specification
 - Characterization and measurement
 - Operation (ramping during luminosity production)
- Backgrounds and systematics
 - Synchrotron radiation
 - Halo, charged background effects
- **Systematics**
 - Z pole calibration?
 - Energy loss to the IP

$\|$

Geant4/BDSIM simulations of spectrometer

Summary

- RHUL/UCL/Cambridge collaboration
 - BPM design more or less finalized
 - Make first S-Band cavity next few months
 - Test in SLAC in Spring 07
- T474 Spectrometer test beam
 - Full magnet test beam during 07
 - Magnet refurbishment and installation now!
- ATF/ATF2
 - Use BPMs for systematics studies
 - 3/4 magnet chicane
 - Calibration/gain drifts
 - Electromagnetic centre tracking