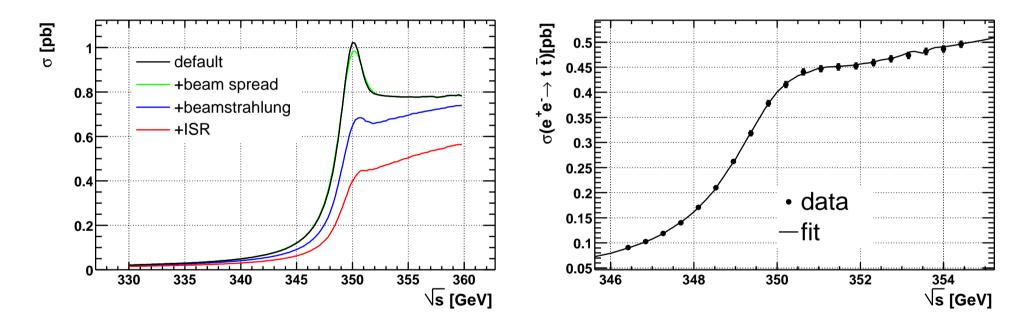
Energy spectrometry R&D in the UK

Mark Slater, Mark Thomson, David Ward University of Cambridge

Stewart Boogert Royal Holloway University of London

Filimon Gournaris, Alexey Lyapin, David Miller, Matthew Wing University College London

- Introduction and motivation
- Current work
- Future plans


Spectrometry Workshop

Zeuthen, 21 November 2005

Motivation

Development of spectrometer driven by required precision on physics processes to be measured

Want to e.g. measure top quark to $\sim \mathcal{O}(100)~\text{GeV}$

Precise knowledge of the beam parameters is needed

Continuous monitoring and measurement

Other processes - Higgsstrahlung, *WW* production, pair-production of exotic particle - also provide input.

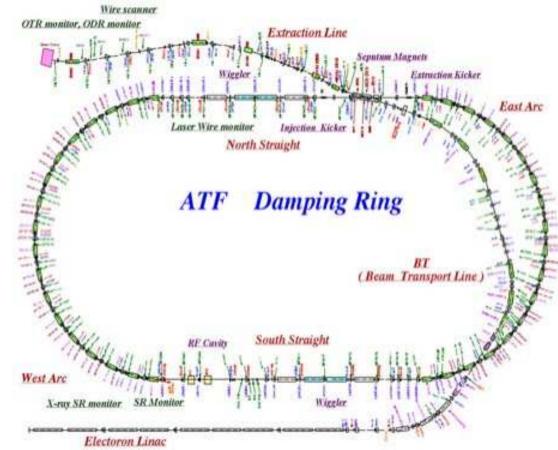
Overview of R&D

Organisationally, the UK groups have funding up to end of 2007 through PPARC, CCLRC and EuroTeV.

International collaboration with: KEK, SLAC, LBNL, LLNL and Notre Dame

Designing a spectrometer for the linear collider

- ATF NanoBPM collaboration (in KEK)
- SLAC End Station A running
- Spectrometer specific BPM design


ATF NanoBPM work I

ATF: damping ring at KEK:

- 0.7-6 Hz repetition frequency
- Energy 1.28 GeV
- Bunch length 10 ps
- 3 bunches at 150 ns spacing

"Learning" laboratory for us - hands-on experience: test-beams, BPMs, etc.

Cavity BPMs from BINP/SLAC and KEK

ATF NanoBPM work II

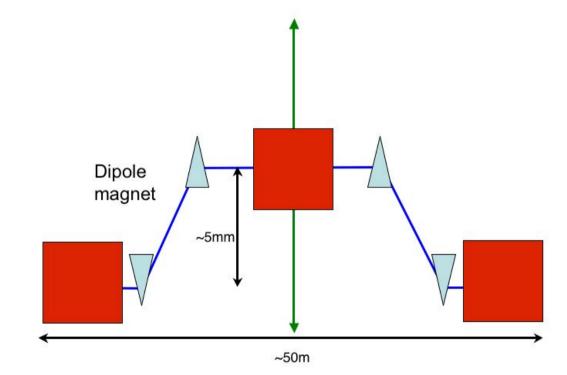
Involved in general test-beam running and maintenance

We have developed analysis and simulation tools

Achieved resolution of 20 nm with a stability of 60 nm

Cavities are not optimised (e.g. radius) for spectrometer application

For details of results, see Alexei's talk


Test-beam at SLAC...

Energy Spectrometer

UK/US groups developing 4 magnet system:

- Total length 50 m
- Beam deflection 5 mm
- 100 nm BPM resolution $\Rightarrow 2 \times 10^{-5}$ energy resolution

Vary dipole strength

Move central BPM to track beam movement

End Station A

Full energy spectrometry study with:

- Electron beam of 28.5 GeV
- Similar bunch length and size expected for the ILC

Test design and operation

Using SLAC cavities with O(100) nm(?)

Schedule:

- Initial set-up in early January 2006
- Stage 1 in February 2006: install BPM, readout, calibrate and measure resolution
- Stage 2 in summer 2006: add magnets and operate with different fields

UK contribution

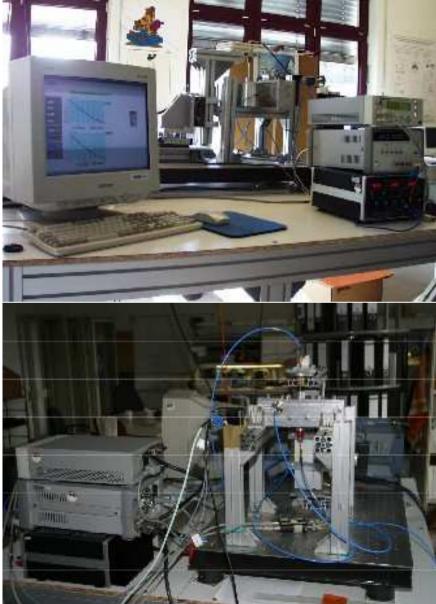
General test-beam support and shifters

Electronics (digitisers, two 8-channel, 125 MHz, 14 bit VME cards)

Analysis (similar to ATF work)

Movers and design for Stage 2

Defining spectrometer BPM design: we can prototype these!


Cavity test-stand

Excellent opportunity for development using Alexey's expertise and equipment generously provided by Heinz-Juergen.

Cavity test system with antenna on 2d translation stage

System delivered and some work started. A new lab is currently being refurbished

Simulation started for prototype spectrometer BPMs which are expected in early 2006

Future programme

(Will have) done groundwork study on energy spectrometer \Rightarrow develop full-scale prototype:

- Final cavities
- Electronics and readout
- Magnets and magnet characterisation
- Operation in high-energy beam
- (Will need a lot of money)

Other supplementary projects: energy spread, ...?

Summary

Basic research on BPMs at the ATF has progressed well with a resolution of 20 nm

ESA tests are starting soon in which we will validate the design and understand the mode of operation

Have built up an in-house test lab to develop BPMs for the spectrometer

Also starting to think about our future