Beam Energy Measurement by Synchrotron Radiation (some first ideas)

K.Hiller and H.J.Schreiber DESY Zeuthen

R.Makarow, E.Syresin and B. Zalikhanov Dzhelepov Laboratory of Nuclear Problems, JINR

H.J.Schreiber

Canonical method to measure the beam energy E_b

Magnetic Spectrometer (e.g. proposed in LC-DET-2004-031)

Beam energy measurement is based on precise angular measurement and on precise B-field integral of the spectrometer magnet

Example: $E_b = 250 \text{ GeV}$, BI = 0.4 Tm, with $\Delta B/B = 2 \ 10^{-5}$, and sigma(BPM) = 100 nm $\rightarrow dE_b/E_b \sim 5 \times 10^{-5}$

H.J.Schreiber

Synchrotron Radiation Fan

3 radiation fans cover exactly the electron bending angle

 \rightarrow Measurement the width of the fan resp. the position of both edges allows to determine E_b

H.J.Schreiber

Horizontal radiation Fan along the Beam

(produced by 250 GeV electrons)

Beam tube radius 10 mm (beam wall 2 mm steel)

→Radiation fan at all BPM positions inside tube

→Touch the steel wall downstream of ~ 40m

50 m downstream of the spectrometer magnet SR fan width ~2.8 mm in x, while ~0.5 mm in y, (for photons with 20 keV energy)

Radiation Fan at 50 m

for 3 beam energies (beam tube wall omitted in simulations)

Most photons still Inside the beam tube

Especially left edge Not visible !

H.J.Schreiber

Radiation Fan at 90m

again for 3 beam energies (beam tube wall omitted)

Both edges visible outside the beam tube

H.J.Schreiber

Radiation Fan at 90m (2)

E [GeV] Width [mm], in x 247.5 71.4 252.5 70.0

No beam tube wall !

Sensitivity
 1.4 mm / 5 GeV

The Influence of the Wall

2 mm steel tube deteriorates resolution of edge positions significantly

Selection of 10 -100 keV photons changes not much

→ avoid penetration of SR through steel wall

H.J.Schreiber

- Enlarge continuously beam tube radius $R = 1 \text{ cm} \rightarrow 3 \text{ cm}$
- Install 2 Roman pots with thin windows for separation from vacuum
- Insert position sensitive radiation detectors

H.J.Schreiber

GEANT simulation (including bunch sizes, energy spread, fringe fields) → tracking of SR photons to the detector (Si)

In each plot, two histogram are superimposed

- one for nominal E_b = 250 GeV, the other (in yellow) for 250 GeV + 100 MeV

 \rightarrow shift of right edge position in x = 8 µm; shift of left edge position = 16 µm so that the total width shrinks by 24 µm

H.J.Schreiber

When including a window between vacuum of beam pipe and Roman Pots

- 300 μ m of steel \rightarrow yellow to black histograms

→The edges become somewhat less sharp, but still good recognizable and the shift of edge positions is not altered

H.J.Schreiber

Detection of X-Rays

X-rays have no electric charge and cannot directly detected:

→1) use scintillators to get low energetic photons of 200 – 1000 nm wavelengths which match sensitivity of PMT or photodiode

→2) convert X-rays into electrons/positrons which produce electron-hole pairs by Coulomb interaction, and collect their charge

8	Photoelectric	Compton	Pair Production
interacts with	bound electron	"free" electron	atomic nucleus
energy range	<100 keV	~100 keV - 10 MeV	>1.02 MeV (pred >10 MeV
energy variation	I/E ³	I/E	E
Z variation	~Z ³	none	Z

Due to the large radiation dose expected in the detector

- \rightarrow set-up is supplemented by Rh mirrors (somewhere after the last magnet)
 - reflection of only photons < 20 keV, (with total reflection only below critical angle $\varphi_{max} \sim [0.08/E_v(keV)] = 0.4$ mrad)
 - improve of position resolution of incident gammas (to 1-3 μ m)
 - sensitive area of the detector reduced to few millimeter (3-5 mm)
 - if some signal amplification is needed, e.g. using gas-amplification detector, the gas pressure can be limited to ~100 atm.

H.J.Schreiber

Separation of SR at low energy from hard radiation

The background hard radiation component is much greater than the number of useful γ-quanta.

A highly selective reflecting mirror separates γ-quanta with energy

 $E_{\gamma} \sim 1 - 20$ keV, for mirrors with a large Z

Reflection efficiency for Rh mirror vs. E_v , keV

H.J.Schreiber

Detector (proposed)

Sensitive region contains N_x Ge layers 2 μ m thick. The layers are separated with dielectric 0.05 μ m thick. To read out information, each layer is surrounded with a gold contact 10 μ m wide and 0.9 μ m thick.

Estimate of Signal Size

```
At 70 m the fan width ~70 mm
```

and the # of gammas (<20 keV) is ~2 $10^6 \rightarrow 4 10^4$ within 1mm Ge.

A photon needs some 10 eV to generate an electron

 \rightarrow # of electrons within 1 mm Ge ~8 10⁷

and $N_e \approx 10^5$ per 1µm of Ge.

An amplifier conversion factor of 15 mV/fC with with an input charge of 10^5 electrons produces an output signal with an amplitude of ~30 mV

If for some reasons the number of γ -quanta in the range 1 – 20 keV is not sufficient for a detectable signal

 \rightarrow alternative proposal for the detector:

a plan-parallel avalanche detector with gas amplification 10-100 and a linear resolution of $1\mu m$

Detector is a flat capacitor filled with Xe at 100-150 atm; anode plane comprises about 1000 Al layers 0.9µm thick, separated by dielectric.

High voltage is applied to the carbon-coated mylar cathode plane $20\mu m$ thick. The 10 x10 mm² entrance windows made of 1 mm thick beryllium.

Position of the device in a magnetic field to avoid resolution degradation due to electron diffusion ?

H.J.Schreiber

CCD (back-up solution)

dE = 109 eV at 5.9 keV (Fe55)
quantum efficiency > 10% at E < 10 keV
12 x 12 μm² plus micro-mesh plate gives 1 ... 2 μm spatial resolution
drawback - slow readout in msec

Summary (preliminary)

- SR has the potential to monitor the beam energy with high precision
- based on a concrete magnetic chicane

→ sensitivity 1.4 mm/5 GeV

- challenging task: high position resolution detector (1-3 μm) for low energy gammas within large radiation background
- scaling the 1.4 mm/5 GeV sensitivity

 $\rightarrow \Delta E_{b}/E_{b} \sim (1-3) \ 10^{-5}$

- the concept needs some 70m dedicated beam line free of further magnets
- simple scheme using well-proven Roman Pot technology
- radiation detectors easy to exchange (radiation damage !)
- width of the radiation fan insensitive to changes of beam position and inclinations

H.J.Schreiber

- the detectors should withstand a high counting rate (~ 10⁹ cm⁻² sec⁻¹) and has to have adequate radiation resistance
- detector production should be simple and may be carried out by methods used in the microelectronic industry
- calibration (e.g. Z mass) \rightarrow absolute beam energy measurement (?)

H.J.Schreiber

Conclusions

Energy resolution : spatial resolution / sensitivity

dX	dE	dE / E	Feasibility
100 μm	357 MeV	1.4 10 ⁻³	\rightarrow possible with existing detectors
10 μm	36 MeV	1.4 10 ⁻⁴	\rightarrow in reach with some detector R&D
1 μm	4 Mev	1.4 10 ⁻⁵	→ probably a dream

- needs some 100m dedicated beam line free of magnets
- simple scheme using well-proven Roman Pot technology
- radiation detectors easy to exchange (radiation damage !)
- width of the radiation fan insensitive to changes of beam offsets and inclinations
- without calibration good for relative beam energy changes

H.J.Schreiber

Acknowledgement

Nor Amberd Station 2000m

ia. or

Lake Sevan

H.J.Schreiber

Monastery Geghard

... thank you very much Robert and Valery for the meeting in such great surroundings.

Hamamatsu CCD

CCD

Charged-Coupled Devices (CCDs) are solid-state image sensors that provide low light level detection, with high signal-to-noise ratio and wide dynamic range. The vast majority of our CCDs are full frame transfer devices with 100% fill factor. We offer scientific grade CCDs including a unique back-thinned (BT-CCD) device featuring 90% quantum efficiency (QE). The back-thinned CCD has high QE from the near infrared to the vacuum UV region of the

spectrum and it can even directly detect X-rays with energy below 0.5 keV. Front-illuminated CCDs can be used to directly detect X-rays up to 10 keV and X-rays over 100 keV can be imaged using fiber optic scintillators (FOS). Our CCD detectors are used in low light level imaging, raman spectroscopy, microscopy, non-destructive inspection, dental X-ray imaging and medical imaging.

 \rightarrow CCDs or other (thin) solid state detectors measure in the range < 100 keV

H.J.Schreiber

Synchrotron Radiation Spectrum

Critical energy: 50% of power

$$E_{crit}[keV] = 0.665 \cdot B[T] \cdot E^2[GeV]$$

250 GeV, 0.5 mrad or 0.4 Tm \rightarrow E_{crit}= 16.6 MeV

H.J.Schreibei

Radiation Fan along the Beam

Beam tube radius R = 10 mm Beam wall 2 mm steel

→Radiation fan at all BPM positions inside tube

→Touch the steel wall downstreams of ~ 40m

6000

8000

40M

Z of Beam Pipe Hits

100m

DETECTOR SIGNAL

Assume, 300 tracks enter the detector within a sensitivity range of 1 mm and each track generates about q ~ 105 electrons, about N_e~ 3 10⁷ electrons are produced inside the detector

At the amplifier conversion factor 15 mV/fC the input charge of 10^5 e will produce an output signal with the amplitude ~ 30 mV.

GAS AMPLIFICATION DETECTOR

Low detector signal can be increased by factor 10-100 by gas amplification in detector at linear resolution of 1 μ m

Detector is filled with Xe at 100 - 150 atm. The anode plane comprises about 1000 AI layers 0.9 µm thick and separated from each other by dielectric. High voltage is applied to the carbon-coated mylar cathode plane 20 µm thick.

Detector is placed in the magnetic field to remove the diffusion of electrons upon the detector resolution.