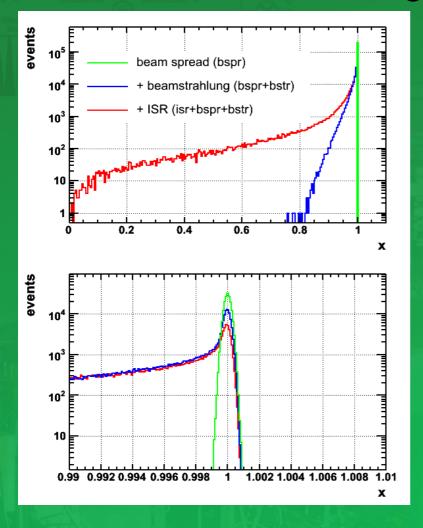
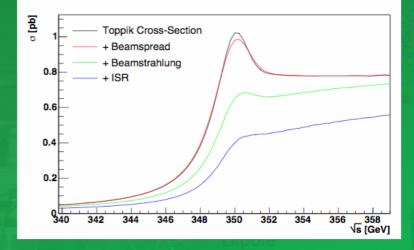
Energy Spectrometer for the ILC

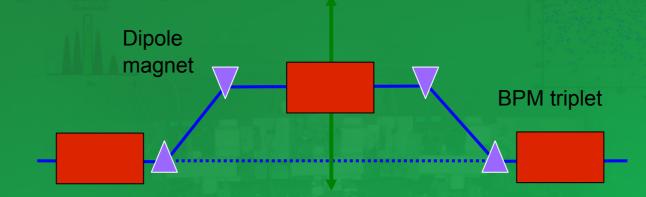

Alexey Lyapin University College London


BPM energy spectrometer collaboration

UCL: Filimon Gournarnis, Alexey Lyapin, Matthew Wing Cambridge: Mark Slater, David Ward RHUL: Stewart Boogert DESY-Zeuthen: Heinz-Jeurgen Schreiber, Michele Viti JINR (Dubna): Viktor Duginov, Nikolay Morozov

In collaboration with SLAC, KEK, UC Berkley, LLNL, BINP...

Luminosity spectrum



Precision threshold scan measurements:

- Energy loss effects have to be taken into account
- Absolute beam energy measurement of 1 part in 10⁴
- Spectrometers up- and downstream

BPM spectrometer requirements

- Chicane
 - 4 magnets
 - 5 mm maximum deflection
 - Bipolar operation
- Measurement time
 - Single bunch
 - Bunch train
 - 1 hour / 1 day

- Mode of operation affects BPM design
 - Operation of chicane (frequency of ramping)
 - Frequent return to low energy?
 - Essential design beam energies
 - 50, 175, 250 & 500 GeV
 - Move BPMs to null dipole signal
- Single bunch information useful for machine operation?

ILC spectrometer tasks

Spectrometer analysis:

- Systematic effects in the spectrometer chicane
- Backgrounds
- Impact of the spectrometer chicane on the beam (energy bandwidth etc)
- Possible modes of operation
- Possible machine modes
- Positive and negative scenarios

BPM analysis

- Resolution
- Range of the best operation
- Multibunch operation
- Calibration
- Stability
- Bunch shape effects
- Machine related issues

Magnets:

- Field strength
- Length
- Synchrotron radiation
- Field mapping
- Online monitoring
- "Zero" field measurement

Alignment

- Initial BPM alignment
- Intra-triplet BPM movement
 - Triplet to triplet movement

Movers

- Calibration + 5 mm offset
- Specification

Alternative methods???...

ILC spectrometer in UK

D (m)

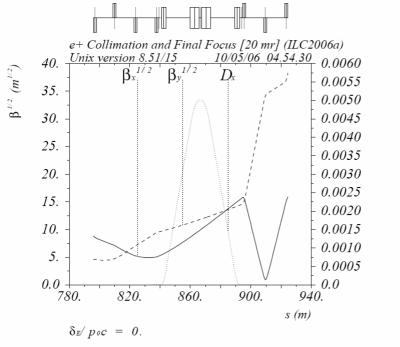


Table name = TWISS

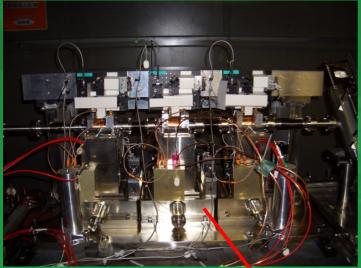
- Luminosity spectrum simulations
- Spectrometer analysis:
 - Started with a simulation of systematic effects in the spectrometer chicane
 - Backgrounds simulation
 - Improving existing analysis of the impact of the spectrometer chicane on the beam (energy bandwidth etc)
- BPM analysis
- BPM design and production
- Movers for BPMs

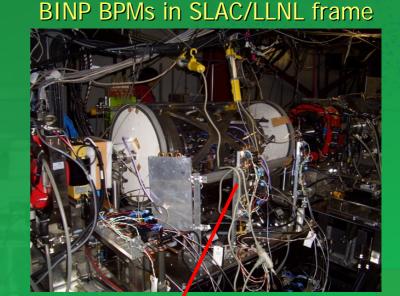
Energy spectrometer meeting, JINR, May 2006

BPMs in the spectrometer

Essential part of diagnostic

- 9 BPMs per spectrometer x 4 beam lines ~36 BPMs
- Requirements different from Linac BPM requirements
- Requires detailed design work now

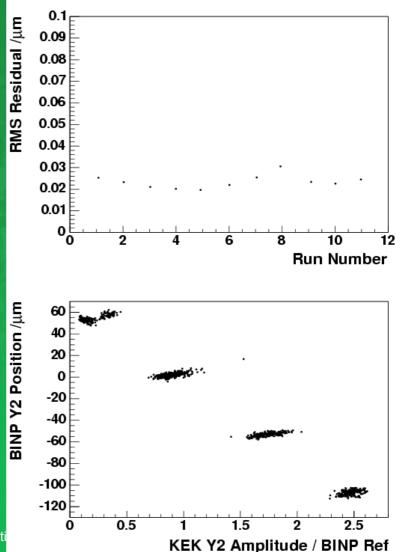

Spectrometer BPM requirements


- Spectrometer BPM will probably set the most stringent requirements on BPM design
 - Aperture
 - Resolution
 - Dynamic range (1000:1)
 - Stability (intrinsic and electronics)
 - Accuracy
 - Calibration
 - Backgrounds
- Existing BPM designs are far from optimal for an energy spectrometer
 - Button and strip-line not seriously considered
 - ATF/ATF2 aperture
 - Reentrant resolution/stability?
 - Generic pill box cavity

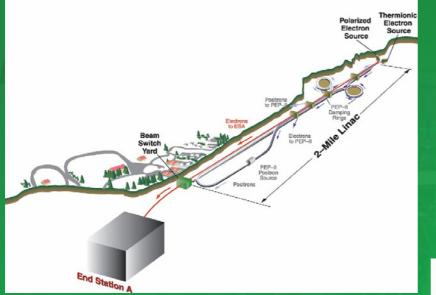
- Machine
 - Bunch angle, position & charge jitter
 - Aperture
- Spectrometer
 - Movement range
 - Stray fields
 - Emittance dilution
- BPM
 - Resolution already achieved (See ATF results)
 - Scaling of resolution as function of cavity size
 - Design for stability (monopole rejection)

NanoBPM collaboration at ATF

KEK BPMs on flexure piezo movers

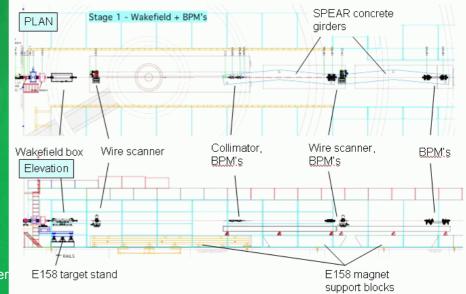


 Experiment to test the best BPM resolution among with the other BPM properties, systematics and stability

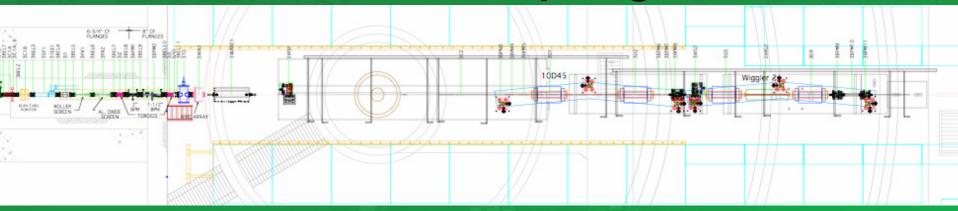

Results from ATF

April 2006 data

- Fitting algorithm
- Calibration using hexapod movers
- Resolution for the best runs
 ~ 18 nm
- Short and long term drifts less than 100 nm
- LO sources locking improved
- KEK BPMs coupling to the reference cavity fixed
- Cross-calibration with corrector magnets

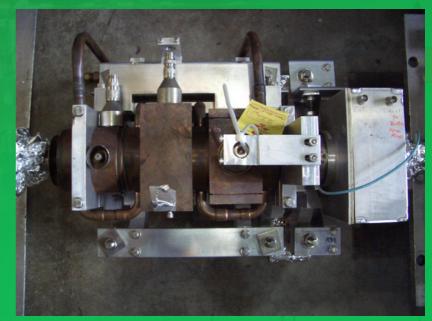


SLAC ESA spectrometer activities

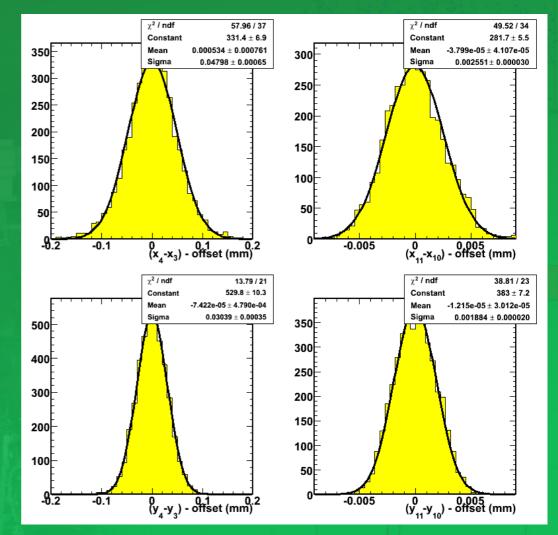


- Two more runs next year with magnets installed
- Planning to add/replace BPMs around 2007 with higher resolution ones now designed in UCL

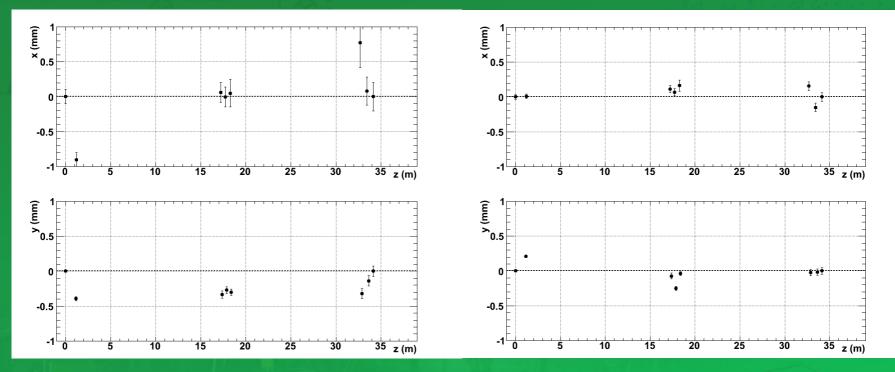
- One of the primary tests is a 4magnet chicane spectrometer
- High energy beam test
- Commissioning run in Jan 2006 to test the BPMs and electronics, other diagnostics installed
- Preliminary old (not nano-) cavity BPM resolution with the new electronics ~1µm



End station A programe


Plans to test chicane ideas at ESA

- Using old SLAC cavities
- Test of chicane ideas and identification of possible problems
- Test system of other general ILC and spectrometer specific BPM designs
- New RF electronics
 - Resolution ~1µm
- First tests in January and April 2006, chicane tests in 2007...



Results from ESA

- Commissioned 2 BPM triplets, including the new Linac BPMs
- Resolution data
 - Resolutions of <1µm were achieved
 - Dynamic range +/- 1 mm
 - Resolution of the Linac BPMs still worse (few µm), should improve significantly with the analysis tuned to the different decay rate/bandwidth

Results from ESA

BPM alignment

- 3 sets aligned within +/- 200 µm
- Distance between sets ~20 m
- See ESA related talk by B. Maiheu...

Energy spectrometer meeting, JINR, May 2006

Need optimized BPM design

Cavity BPMs, no alternative yet

- Positive experience with ATF/ATF2 cavities
- Need a bigger aperture for machine protection
- Scale ATF2 design to a lower frequency
- See BPM talk...

As a summary

- Still more questions than answers
 - Spectrometer geometry/layout
 - Is the existing design optimal? (Z to 1TeV running?)
- Accelerator
 - Is the existing chicane acceptable for the machine?
 - Sets limits on dipole magnet requirements (quadrapole, sextapole contributions)
 - More specific information on the beam at chicane location
- BPM

- Resolution ~100nm, stability ~200nm quite possible
- Scale existing cavity designs for spectrometer
- High gain electronics and readout readily available
- Operation
 - Calibration with Z running
 - Frequency. How long can the calibration with Z be maintained
 - Systematic effects using ~50GeV calibration up at 500 GeV?
 - Magnet ramping
 - Magnets

Must begin discussion with magnet designers