Some points for discussion on the SR paper

ILC Beam Energy Measurement based on Synchrotron Radiation from a Magnetic Spectrometer

K. Hiller¹, R. Makarov², H.J. Schreiber¹, E. Syresin³, B. Zalikhanov³

¹DESY, Platanenallee 6, D-15738 Zeuthen, Gernany ²Moscow State University, 119899 Moscow, Russia

³Dzhelepov Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow Region, Russia

Abstract

We propose to measure, on a bunch-to-bunch basis, the beam energy at the International Linear e^+e^- Collider by monitoring synchrotron radiation (SR) light emitted in the magnets of an energy spectrometer based on beam position monitors. Measuring the width of the horizontal SR fan permits to determine the relative beam energy with a precision better than 10^{-4} . There are two different measuring schemes possible. The first one is based on edge measurements of the direct SR fan, while the second option includes mirrors to deflect soft SR light to detectors located far from the beamline. For high-spatial resolution detectors three possibilities are under discussion: a silicon strip detector, a novel-type Si detector with exceptional position resolution and a gas amplification detector. The main problem of the first scheme is the high radiation dose expected in the direct SR fan. If mirrors are used this dose is strongly reduced if the mirrors resist the heat load. The novel-type Si and gas amplification detectors needs further R&D to be realized.

Absorption of light in material

$$(I_0) \longrightarrow I = I_0 * \exp\{-\mu \rho d\}$$

- μ absorption coefficient [cm²/g]
- ρ density of material [g/cm³]
 d thickness of material [cm]

For aluminum (p=2.70 g/cm3) and a thickness of 33 cm

Ε _γ	abs. coeff	I/I ₀ =1	
0.1 keV	~10^4	0	
1	~10^3	o 🖌 🕨	- Photons with Eγ < 20 keV,
2	~8 10^3	0	if not reflected, completely absorbed
5	~10^2	0	
10	26.2	0	 Photons with larger energies
20	3.44	0	(up to ~10 MeV), almost all absorbed
50	0.37	0	by Al support for the mirror of 1mm
100	0.17	0.26 10^-6	
200	0.12	0.23 10^-4	- some heat load of 15-20 Watt
500	0.084	0.56 10^-3	is expected \rightarrow consequences?
1 MeV	0.0615	0.42 10^-2	first rough design of mirror system
5	0.0284	0.080	(with cooling ?) is needed
10	0.0232	0.13	

GEANT3 simulations of Karlheinz

might be needed for separation of the Roman Pots from the vacuum system

or if a separate vacuum chamber for the mirror system is required

Thus, at least 1 window will be passed by SR light

- window thickness?
 - window material ? \rightarrow have to be studied

Assume aluminum (Al) window of 100 µm thickness:

Ε	I/I ₀ =1	
0.1 keV	0	- most photons with $E_{\gamma} > 20$ keV
1	0	go through the window
2	0	\rightarrow fine for scheme 1
5	0.7 10^-2	- but a large fraction of the SP
10	0.49	
20	0.91	(with Ey < 10 keV) will be absorbed
50	0.99	\rightarrow bad for the mirror scheme
100	1	
>100	1	$\mathbf{\downarrow}$
	Solution: - try to public by u	ush the value of 'absorption' energy from 10 down to 1 keV using very low Z material (Be?) and/or reduce the window thickness substantially

Examples:

- 100 μ m thick Al window \rightarrow 50 μ m Al window:
 - → SR with E < 2 keV is absorbed
 - → 26 % instead of 0.7 % of SR with 5 keV energy passes the window
 - → most of the SR with E > 10 keV passes the window

 \rightarrow is that amount of remaining SR sufficient for efficient its detection?

- Be window of 100 µm:
 - → 75 % of SR with E = 2 keV is absorbed
 - → 92 % of SR with 5 keV passes the window
 - → 99 % of SR with E > 10 keV passes the window

 \rightarrow the situation is somewhat better, but not perfect

Is energy resolution degraded if mirrors are implemented in the set-up?

No mirror case:

Measuring both edge positions, x_left and x_right,

the bending angle Θ is expressed

with L_{tot} = distance 'magnet-detector'

The uncertainty of Θ governed by the uncertainties of x_left, x_rigth (=dx) and that of L_{tot}

Mirror case:

$$\theta = \frac{x_L + x_R - 4L_3\Phi}{L_2 - L_3}$$

 Θ is now a function of x_left, x_right, and L₂, the distance 'magnet-mirror' and in addition of L₃ (the distance 'mirror-detector') and the mirror inclination angle Φ

Thus, two more quantities with errors entering Θ \rightarrow increase of d Θ/Θ and therefore of d E_b/E_b

\rightarrow case of mirrors degrades the beam energy resolution

do we have a simple formula to estimate this degradation which is also suitable to optimize the mirror set-up? Uncorrelated motion/vibration of the magnets

in vertical direction -- no effect (?) → CHECK !
 in horizontal direction -- steps, close edge regions of SR yield
 → needs some understanding

Vibration of detector -- no effect (?) on beam energy determination since both x_left AND x_right are modified in the same manner → CHECK!

What next?

- draft
- idea, sketch of performance, feasibility (first GEANT simulation), possible detectors
- needs some points to be clarified
 - \rightarrow hope, most of them clarified during the meeting
- paper (on feasibility of the method) \rightarrow ready in summer 2006

• R&D (detectors)

- R&D for detector(s), prototype tests ? -- load of SR ? -- ???
 in case of success:
 - based on new BPM-based energy spectrometer (~2008/2009?)
 - actual ILC beam delivery system (BDS)

→ design report (technical/conceptual ?) -- time window:

~2007 - 2009

- manpower ? financial support ?

Mirror: - if Rh: Θ = 3 mrad \rightarrow 3.8 mrad (max. possible value)

- mirror support: thin as possible (< 1 mm) and material with low Z (Be ?, wire system ?)

- other material with larger reflection angle Θ ?

'technical' design with a dedicated vacuum chamber necessary !

Window: - if we restrict to SR with E < 20 keV (scheme 2)

a window with very small absorption probability

has to be chosen \rightarrow which one ?

Detector $R&D \rightarrow Design Report in 2007 - 2009$? Start to think about !