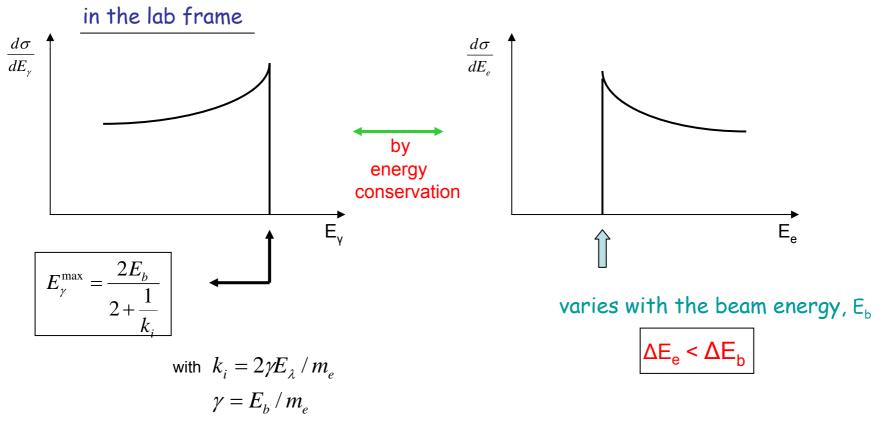

Precise ILC Beam Energy Measurement using Compton backscattering


$$e_b + \gamma_L \rightarrow e' + \gamma'$$

Basic properties (kinematics) of scattered photon resp. electron:

- *sharp edge* in the energy distribution
- both particles are strongly forward collimated
- the position of the edge is not dependent on the initial

polarization state

The *energy of the edge electrons* depends

- on the primary *beam energy* ($E_{\rm b}$ = 250 GeV (45 ... 500 GeV)
- the laser wavelength resp. the *laser energy*, E_{l} (~ eV)
- the angle α , the angle between the incoming particles (which should be chosen to be very small)

These quantities determine whether the edge electrons (photons) have a large or small energy; once E_1 and a are fixed \rightarrow access to the beam energy E_b

Our basic requirement of $\Delta E_{b}/E_{b} = 10^{-4}$ means to note an absolute shift

of the beam energy of $\Delta E_b = 25$ (50) MeV at $E_b = 250$ (500) GeV

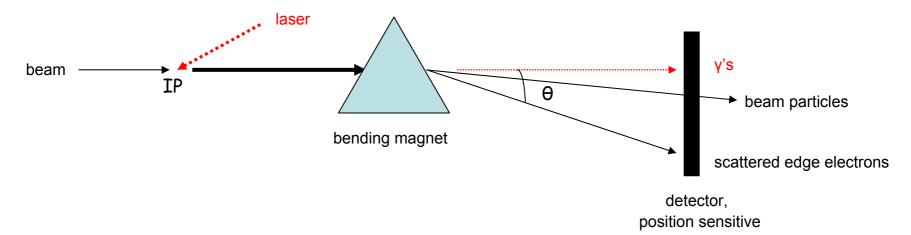
 $E_{h} = 250 \text{ GeV}, a = 0., CO_{2} \text{ laser } (E_{1} = 0.117 \text{ eV})$ Example:

 \rightarrow E_o(edge) = 173 GeV and Δ E_o = 11.9 MeV for Δ E_b=25 MeV

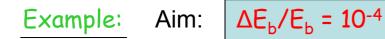
Nd: YAG (green, $E_1 = 2.33 \text{ eV}$)

→ $E_{\rho}(edge) = 25 \text{ GeV}$ and $\Delta E_{\rho} = 0.254 \text{ MeV}$

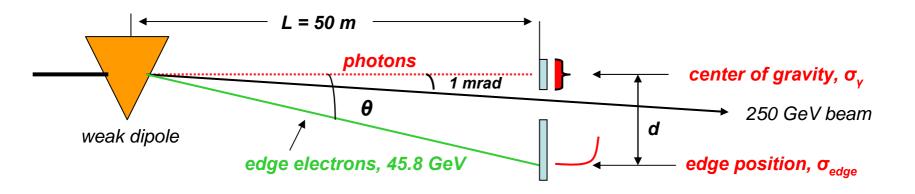
H.J.Schreiber


lasers with large wavelength are preferred

Sketch of possible experiment


- The beam electrons interact with the laser photons at very small angle α , so that downstream of the IP untouched beam particles (most of them), scattered electrons and photons exist. All these particles are overlaid and strongly collimated in the forward direction.

- By a dipole magnet these particles are divided into through-going photons, less deflected beam particles and scattered electrons with some larger bending angles.


- The electrons with the largest bending angle are the edge electrons and their position in the detector should be carefully measured.

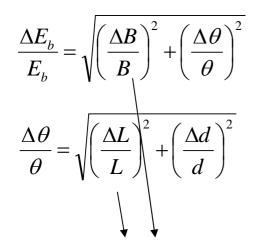
Having precise information on the bending angle θ of the edge electrons and the B-field integral, the beam energy (for each bunch ?) can be determined -- *how well* ?

infrared Nd:YAG laser ($E_L = 1.165 \text{ eV}$)

in this example, Θ is 5.46 mrad resulting to d = 27.3 cm

```
Note, if E_b changes by 25 MeV,
```

and $\Delta L = 0.1 \text{ mm}$, $\Delta \int BdI / \int BdI = 10^{-5}$


one needs a precision for the distance d of

 $\Rightarrow \Delta d = 5 \, \mu m \, !$

to recognize a 25 MeV shift of beam energy

Using a CO_2 laser with $E_1 = 0.117$ eV and the same set-up

 \rightarrow energy of the edge electrons 172.6 GeV with an offset in the detector d = 7.2 cm

independent on laser

For fixed B-field and distance L (magnet -> detector) the relative error on d

 $\rightarrow \Delta d/d (CO_2) = 5.4 \cdot \Delta d/d (Nd: YAG)$

due to the small value of d in the CO_2 case

non-trivial task to select the best suitable laser in conjunction with many other parameters (B-field, L, detector, ...)

GEANT SIMULATIONS

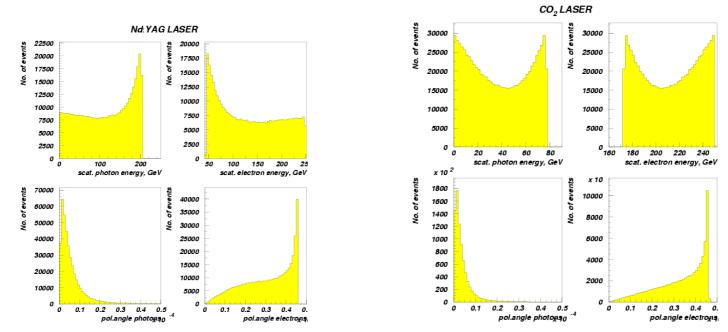
included

- beam sizes of the electron bunches ($\sigma x = 20 \ \mu m$, $\sigma y = 2 \ \mu m$, $\sigma z = 300 \ \mu m$)
- beam dispersion of 5 μrad in x and y
- beam energy spread of 0.15 % of the nominal energy of 250 GeV
- # of electrons/bunch = $2 \ 10^{10}$, unpolarized
- bending magnet of 3 m length with B-field of 2.75 kG; fringe field included, bending in vertical (y) direction;

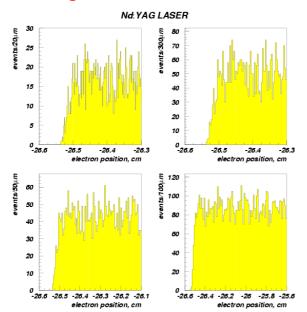
 flat horizontal beam
- synchrotron radiation ON
- distance between magnet and detector L = 50 m
- scattering angle in the initial state a = 8 mrad; vertical beam crossing
- infrared Nd: YAG laser (E_{λ} = 1.165 eV) resp. CO₂ laser (E_{λ} = 0.117 eV) used
- laser dispersion of 5 mrad in x and y, i.e. the laser is focused to the IP
- Nd:YAG laser: spot size at IP of 45 µm, power/pulse = 2 mJ
 - and a pulse duration of 10 psec (with a spacing of 337 nsec)
- CO₂ laser: spot size at IP of 100 µm, power/pulse = 1 mJ and a pulse duration of 10 psec (with a spacing of 337 nsec)
 - \rightarrow laser monochromaticity of 3 10⁻³ resp. 3 10⁻² for YAG and CO₂ laser
- perfect overlap of both beams

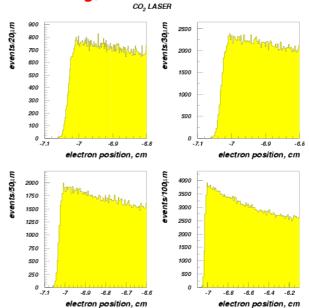
Gaussian smearing

- IP position according to beam sizes in x and y
- direction of beam according to beam dispersion
- energy of beam according to beam energy spread
- direction of laser according to laser dispersion
- angle between the incoming beam and laser according to beam and laser directions
- laser energy according to laser duration $(dw/w \sim \lambda/(c \cdot t))$
- B-field according to its error

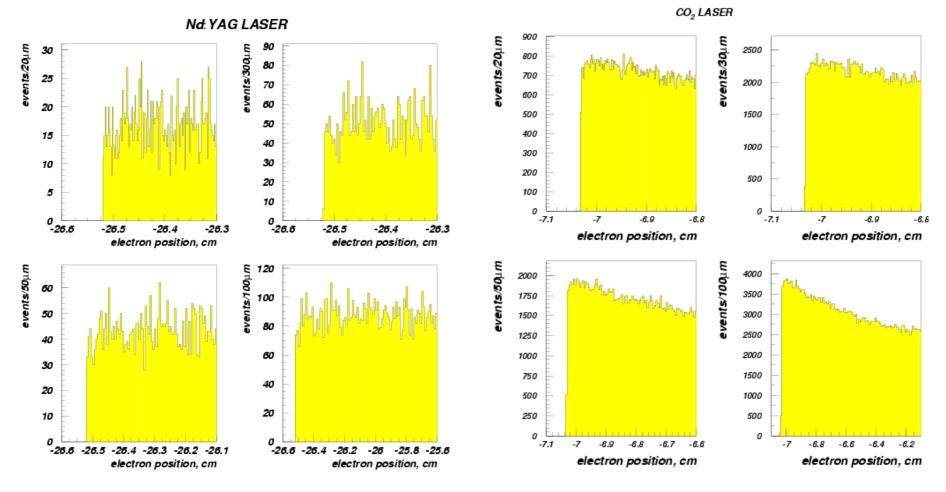

Synchrotron radiation (a stochastic process) in GEANT was switched on all the time

In simulation studies, individual Gaussian smearing can be ON or OFF \rightarrow most important effects can be realized and accounted for


So far, non-linear effects which occur during the beam-laser interaction and which disturb the scattered electron edge behavior NOT taken into account \rightarrow expected to be small or negligible due to small laser power?

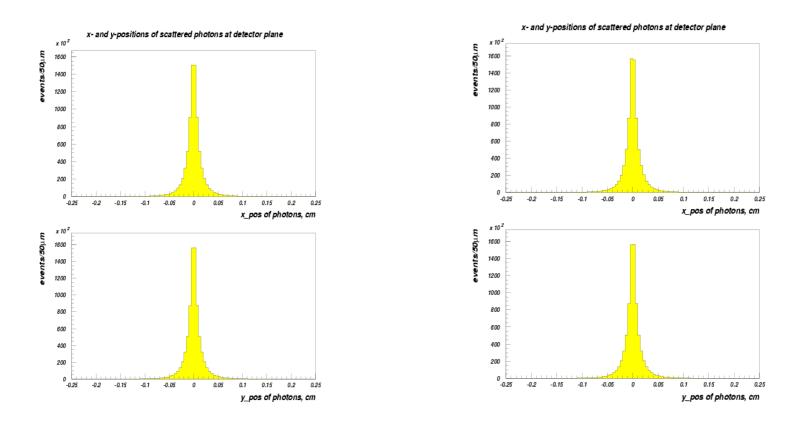

NO detector effects

Characteristics of scattered particles (complete smearing):



Position of the edge electrons in the detector (complete smearing)

Position of the edge electrons in the detector (NO smearing, except SR):


From simulations with several smearing effects ON or OFF → beam and laser energy uncertainties are most important for the electron edge behavior

> for e- beam: both beam energy uncertainties contribute with about equal weights e+ beam: the uncertainty of the laser energy is dominant and governs the edge

Detector positions of the scattered photons (CO_2):

complete smearing

no difference between the two cases visible

 \rightarrow position of scattered photons in detector insensitive to input parameters

(good news)

- Clear, the CO_2 laser provides more electrons close to the edge than the Nd:YAG laser due to larger cross section and somewhat better kinematics in the edge region.
- With assumed laser and electron beam parameters and scattering angle a
 - \rightarrow # of Compton scatters 4 10⁵ for the Nd:YAG laser, while 8 10⁵ for the CO₂ laser

negligible event rate w.r.t. the total bunch intensity \rightarrow method is nondestructive, and the large ILC bunch spacing should allow for single bunch measurements

• Optimization of the experiment not trivial, in particular the selection of the laser,

to be sensitive on a tiny beam energy jump of 25 MeV or less.

- Including further information e.g. from the scattered photons has to be considered.
- Do we need some further beam line elements in the set-up?
- Whatever we do, the emittance of the beam should not be diluted; if however an emittance grow cannot be avoided → think about on a dedicated measuring scheme.

Summary (preliminary)

• Laser: ongoing laser activities

- Nd:YAG laser (infrared)
 e.g. at TTF Nd:YLF laser (λ = 1.047 μm) → 3 MHz repetition rate
 and peak/power of 140 μJ
 - \rightarrow a factor ~10 off our needs

- CO₂ laser

polarized positron source collaboration (see e.g. NIM A 500 (2003) 232) proposed a CO_2 laser with 121 pulses with 2.8 nsec spacing and a pulse power of 250 mJ

resp. recent Snowmass proposal (physics/0509016)

 \rightarrow 3.6 10⁴ pulses with 3 psec rms bunch duration and power/pulse of 2.1 mJ

→ CO₂ laser advantageous (needs more studies), but does not exist → infrared Nd:YAG (Nd:YLF) promising, power increase needed no showstopper

• Magnet:

- a field error of 2 10⁻⁵ today achievable \rightarrow very close to our needs (1-1.5) 10⁻⁵
- vertical bending preferred since σy << σx (flat beam), also background smaller (?), what about emittance in x-direction 2, check horizo

what about emittance in y-direction ?, check horizontal ectrons bending !

• Detector for scattered photons, electrons

- measure the distance d with a precision of 5-8 μ m, bunch by bunch (?) \rightarrow CHALLENGING === silicon strip detector ===

• set-up also usable for (crude) beam profile determination, using the photon spatial distributions in the detector

Further items to be studied

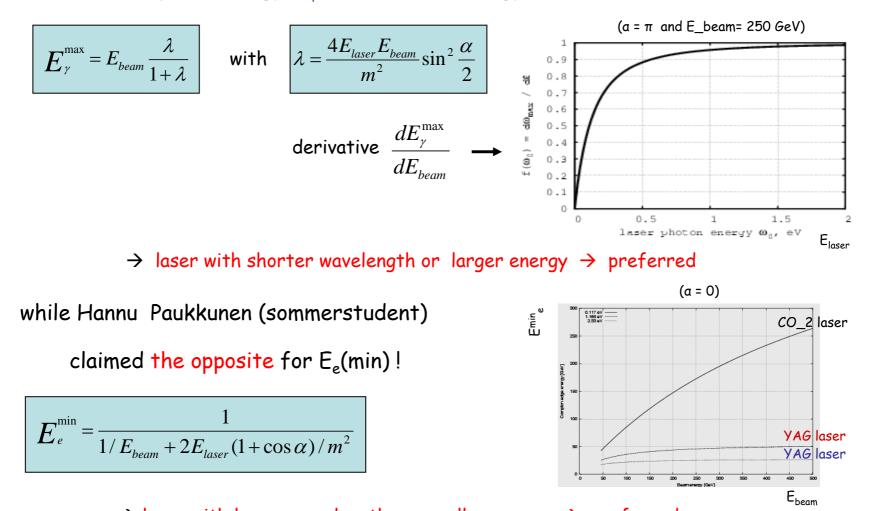
- decision on the best suitable laser and a laser line design
- detector has to be designed and implemented into simulation studies
- optimization of parameters of the set-up
- detailed GEANT simulation
- background ?

• . . .

- account for experiences and results from low-energy experiments
- partners are very welcome

With all that, including further ideas, a conceptual design report in ~ 1 year

With some optimism and further suggestions it seems possible


to achieve $\Delta E_b / E_b = 10^{-4}$ or better

by Compton backscattering of laser light

The idea to use Compton backscattering for beam energy determination has been refreshed in discussions with Amour Margaryan during a visit of Yerevan in autumn 2004

statement' laser with low energy resp. large wavelength is preferred' was questioned (N. Muchnoi):

Max. scattered photon energy, $E_v(max)$, vs. laser energy E_laser

 \rightarrow laser with larger wavelength or smaller energy \rightarrow preferred

\rightarrow SOLUTION?

Solution:

- Energy conservation:

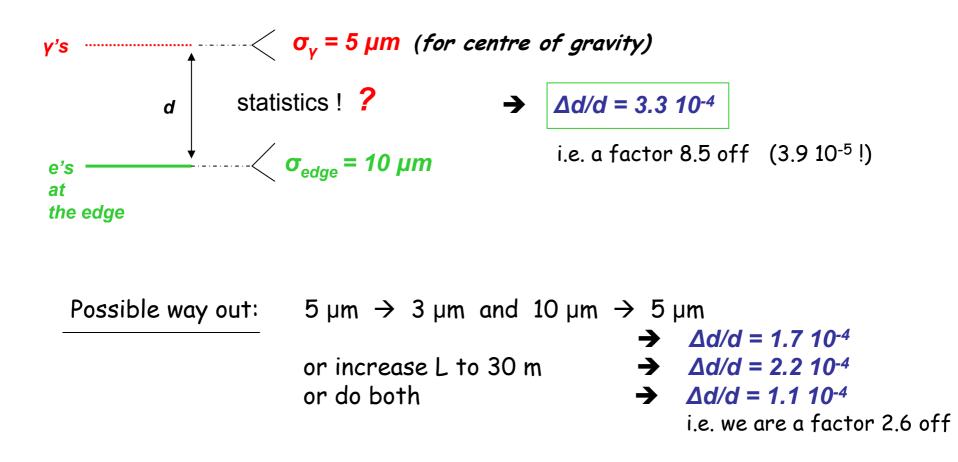
$$E_{beam} + E_{laser} = E_e^{\min} + E_{\gamma}^{\max}$$

\	dE_e^{\min}	dE_{γ}^{\max}
	dE_{beam}	dE_{beam}

and since dE^{max}/dE_{beam} is rising from 0 to 1 with increasing E_{laser}

the quantity (1 - dE^{max}/dE_{beam}) becomes smaller with increasing E_{laser}

 \rightarrow ergo, both are right !


Since we are primary interested on measuring the low-energy edge of the scattered electrons

 \rightarrow a laser with low energy resp. large wavelength is preferred

$$\frac{\Delta E_b}{E_b} = \sqrt{\left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta \theta}{\theta}\right)^2}$$

$$\frac{\Delta\theta}{\theta} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta d}{d}\right)^2}$$

With some optimism and further ideas/suggestions to improve the set-up it seems possible to achieve $\Delta E_b/E_b = 5 \ 10^{-5}$

The task may be divided into three steps:

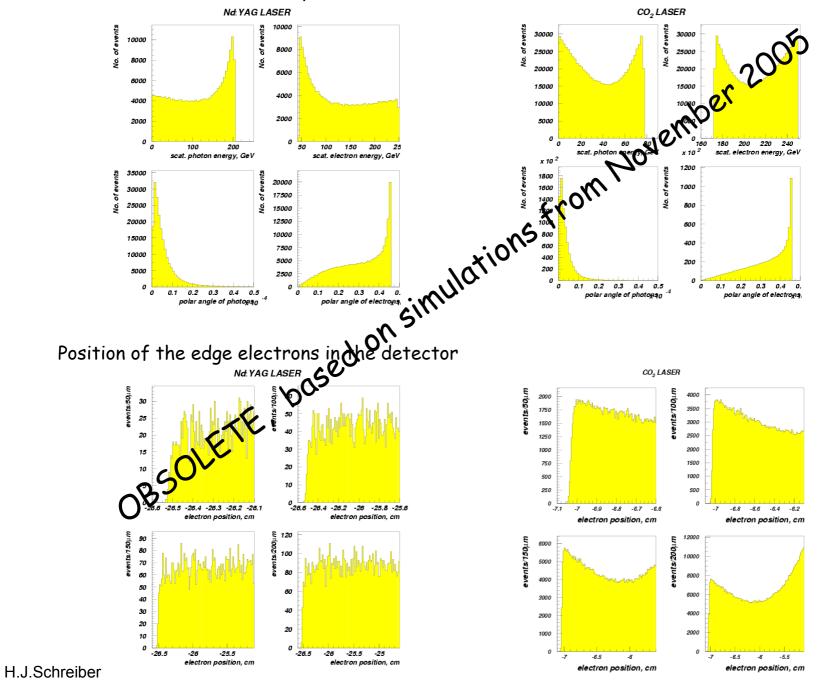
Step No. 1

Fix the kinematics and understand the Compton scattering cross section w.r.t.

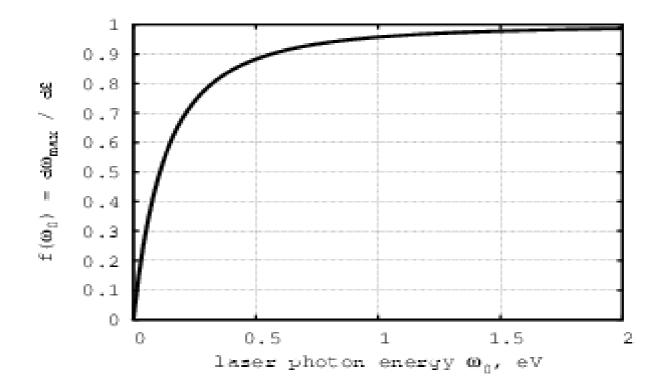
- the angle α, the laser wavelength, the laser polarization for

 a) unpolarized beam electrons at E_b = 250 GeV (46 (Z pole), 500 GeV)
 b) polarized beam electrons (longitudinal and transverse pol.)
- include the luminosity to estimate the rate of the Compton process in a detector

→ optimize the event rate


Step No. 2

Based on the results from Step No.1, design an experimental layout for precise beam energy measurement, for each bunch crossing


Step No. 3

Try to have a first simulation of the experiment with GEANT

Characteristics of scattered particles:

Nikolai Muchnoi, May 2006, dE_y_max/dE_laser vs. E_laser, for E_beam = 250 GeV and a = pi

