ILC Beam Energy Monitoring by Synchrotron Radiation

K.Hiller, Dubna, May 2006

- Principle
- Synchrotron Radiation
- GEANT3 Simulation Results
- Detectors
- Radiation Damage
- Heat Load
- Summary

Principle

1) Beam energy is indirect proportional to the bending angle

 $E = 0.3Bl / \Theta$

2) Edges of the synchrotron radiation fan

measure the bending angle

Example: E = 250, +- 2.5 GeV

Synchrotron Radiation at ILC

e+/e- 250 GeV, magnet B = 0.28 T, L = 3m, Θ = 1 mrad

Mean Photons per $e+/e- \sim 5$

Mean photon energy ~ 3.7 MeV

Two Measurement Schemes

A) Direct edge measurementB) Mirrored edge measurement

Energy Resolution – Direct Scheme

Energy Resolution with Mirrors

 $\rightarrow L_{mirr}$ has no influence on $\Delta E/E$

What is visible at 80 m ?

Mirrors: $\varphi = 3mrad$ No dispersion $\Delta\beta = 0$

"Silicon-Detector" Pitch/binning = 25 µm

Conclusion: $\Delta E / E = 10^{-3}$ clearly visible

What about $\Delta E / E = 10^{-4}$?

 $\Delta E / E = 10^{-4}$ clearly visible, may be even better values ... This seems to be the limit for detection by human eyes !

Since fitting is complicated → check difference plots !!!!

Detectors: 1)gas-based

MWPCs, image plate chambers, micro-hole structures (GEM),...

Detectors: 2) silicon pixels

LHC: Hydrid pixel technology, 50 x 400 / 100 x 150 μ m2 \rightarrow 20 μ m resolution

ILC : needs 20 x 20 μ m2, d << 1 X0 ~ 50 μ m, high rates fast readout > 10 – 20 MHz

Fits better

our needs.

At 6 GeV beam energy the spatial residuals are still multiple scattering dominated. Residuals on the order of $10\mu m$ are obtained, while with the large S/N value of 144 true space resolutions in the order of $2\mu m$ should be possible.

Silicon problem: Radiation Damage

Literature	BELLE: 10%	gain drop at	: 100krad
------------	------------	--------------	-----------

H1: 300 krad for 5 years – to survive

CLEO: no damage for 10 krad/year

LHC: pixel detectors must survive 50 Mrad in 10 years

Dose	estimate for 200 days ILC running	Dose = energy/mass
Mass	= 80mm x 1mm x 0.3 mm X 2.3 g/cm3 = 0.055g	
energy:	from GEANT we know: interaction/photon = 8.5 10 ⁻³ E-loss / interaction = 70 keV	5.2 10 ⁺¹⁹ GeV/kg
ILC	bunch 2 10^{+10} e, full train = 2820 bunches with 5 Hz data taking 200 days	~ 10 ⁺⁶ Mrad
1) 2)	Impossible to use silicon in the di Filter and scale by mirrors ?	rect synchrotron fan

Mirror Heat Load

Few 10 W seems manageable for mirror of few mm steel

E-loss of e+/eheats the mirror

Mirror Power Load by Synchrotron Radiation ≥ Power / 60 50 40 30 20 10 0 3 2 5 Thickness / mm

Summary

1) If dose < 1 Mrad Silicon detectors can be used for $\Delta E/E = 10^{-4}$

2) More radiation hard detectors can relax the situation ...
→ special Dubna Ge/Si layer detector.

3) Mirrors useful to filter/reduce radiation dose for detectors.

4) Mirror problems: dispersion, angular precision, surface quality, stability ... \rightarrow experience needed.

Launch special R&D program for synchrotron radiation detectors and mirrors used for ILC beam energy measurement