Measuring the Beam Energy with Radiative Return Events

Master Thesis of Arnd Hinze (presented by Klaus Moenig at LCWS05)

H.Juergen Schreiber DESY 23/05/05

Introduction

- The beam energy is needed on the 10⁻⁴ level for mass determinations at the ILC (Higgs, top, SUSY...)
- The beam-energy measurement will mainly come from a magnetic spectrometer
- The absolute calibration of the spectrometer is difficult
- The sum of the beam energies is not necessarily equal to the luminosity weighted centre of mass energy $\sqrt{s} \rightarrow \text{next slide}$
- It would thus be useful to have a method to determine the cms energy from real (annihilation) data
- Such a method exists: radiative return events $e^+e^- \rightarrow Z \gamma \rightarrow f f \gamma$
- The validity of this method was already proven at LEP

Energy Bias from Kink-Instabilities

A. Florimonte, M. Woods, IPBI TN-2005-1

- Wakefields introduce a correlation z E ٠
- Disruption give a different weight to different parts of the bunch
- \rightarrow These effects make the luminosity weighted cms energy different from twice the beam energy

255

254

500 GeV TESLA: mean = 150 ppm spread = 30 ppm = 350 ppm max

Basic Idea of the Radiative Return Analysis

- The Z-mass is known with very high precision from LEP
- assume only one photon is radiated

 $\Rightarrow \sqrt{\rm s'}$ can be calculated from fermion angles only

$$\frac{\sqrt{s^{I}}}{\sqrt{s}} = \sqrt{\frac{\sin\theta_{1} + \sin\theta_{2} + \sin(\theta_{1} + \theta_{2})}{\sin\theta_{1} + \sin\theta_{2} - \sin(\theta_{1} + \theta_{2})}}$$

- γ either along the beampipe or its angle is measured
- this formula assumes that the fermion mass can be neglected
- Assume $\sqrt{s'} = M_Z$

$$\sqrt{s} = M_Z \sqrt{\frac{\sin \theta_1 + \sin \theta_2 + \sin(\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2 - \sin(\theta_1 + \theta_2)}}$$

 θ_1

A2

12

First analysis with $e^+e^- \rightarrow \mu^+\mu^-\gamma$ at $\sqrt{s} = 350$ GeV and int. lumi = 100 fb⁻¹

• σ (rad. ret.) ~ 0.5 pb, scales approx. with 1/s

- detector efficiency $(7^{\circ} \text{ cut}) \approx 90\%$
- ideal beam with beamstrahlung and 0.2% Gaussian energy spread

H.Juergen Schreiber DESY 23/05/05

- χ^2 fit of 'data' to MC (reference) samples with free normalisation
 - 'data' sample at $\sqrt{s_{dat}}$ = 350 GeV, MC_{dat}
 - and reference sample at $\sqrt{s_{ref}} = \sqrt{s_{dat}} + \Delta\sqrt{s}$ (= 1GeV), *MC_{ref}*

$$N_{pred}(\sqrt{s}) = \frac{\sqrt{s_{ref}} - \sqrt{s_{dat}}}{\Delta\sqrt{s}} (MC_{ref} - MC_{dat})$$

- easy to include all effects into fit
- fit tested to be bias free in region $\sqrt{s_{dat}} \pm \Delta \sqrt{s}$
- <u>Cuts</u>: 7° < $\theta_{1,2}$ < 183° (detector acceptance of muons)

•
$$M_z - 5 \text{ GeV} < m(\mu^+\mu^-) < M_z + 5 \text{ GeV}$$

H.Juergen Schreiber DESY 23/05/05

Backgrounds

γγ background (e⁺e⁻ \rightarrow e⁺e⁻μ⁺μ⁻):

- very large cross section without cuts
- less than 10% background in fit range after $m(\mu^+\mu^-)$ cut

Zee:

- cross section similar to signal
- after cut on visible electrons ~25% background remains
- however kinematics similar to signal, so no problem

WW, ZZ:

- ZZ already small, WW reduced by $m(\mu^+\mu^-)$ cut
- in the end ~1% background

Results

Fit to 100 fb⁻¹ including beam effects and background:

stat. error

$$\sqrt{s} = 47 \,\mathrm{MeV} \qquad \left(\frac{\Delta\sqrt{s}}{\sqrt{s}}\right) = 1.3$$

- without beamstrahlung and energy spread ~10% better
- little effect from background
- slight improvement possible if 2D fit (\sqrt{s} , θ)

Systematics

Background: no effect for 20-30% background uncertainty

Energy spread: $\Delta\sqrt{s} = 10$ MeV if Gaussian energy spread is replaced by rectangular, no effect if 0.1% instead of 0.2%

Beamstrahlung: method largely cancels errors from beamstrahlung determination

Aspect ratio of tracker: LEP error $\Delta(\delta R/\delta L) = \delta tan\theta = 5 \cdot 10^{-4}$

 $\Delta \sqrt{s} = 160$ MeV, which has to be about an order of magnitude better !

Conclusions

The centre of mass energy can be measured on the 10⁻⁴ level from radiative return events.

Inclusion of Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$, $e^+e^- \rightarrow \tau^+\tau^-\gamma$ or $e^+e^- \rightarrow q$ q-bar γ might improve the result. But each of this channel contains additional complications, which dilute possible improvements.

This is a high luminosity analysis, so relative measurements e.g. in a scan are needed from spectrometers.

The length to radius ratio of the tracking detector needs to be known to better than 10^{-4} not to be limited by this effect.

A global analysis of Bhabha acolinearity for beamstrahlung and radiative return events for the beam energy is needed to understand effects from beam-beam correlations.