Some Remarks, Problems, Questions to the Method of Resonance Absorption for the Beam Energy Determination

In this talk I would like to discuss some problems of the RA method, indicate some possible useful parameters and point out questions respectively problems which should be evaluated in the future

Basic assumption: the RA method is reliable

In the following, only CO_2 (with $\lambda = 10.6 \ \mu$ m) and Nd:YAG lasers (with $\lambda = 1.06$ (or 0.53, 0.27) μ m) are considered

H.Juergen Schreiber DESY 23.05.2005

Check of the main condition for RA:

$$\gamma_0 = \frac{\Omega \pm \cos \varphi \cos \theta \sqrt{\Omega^2 - (1 - \cos \varphi^2 \cos \theta^2)}}{1 - \cos \varphi^2 \cos \theta^2}$$

with
$$\Omega = \frac{\omega_c}{\omega} = \frac{eB}{m\omega}$$

with the magnetic field B and the laser frequency $\boldsymbol{\omega}$

$$\left| \Omega^2 \ge 1 - (\cos \varphi \cos \theta)^2 \right|$$

some examples:

Laser	B [T]	Ω^2
	0.5	2.5 10-7
CO ₂	2.0	3.9 10-6
	6.0	3.6 10-5
	0.5	2.4 10-9
Nd:YAG	2.0	3.8 10-8
Λ-1.064 μπ	6.0	3.4 10-7
	0.5	1.5 10-10
Nd:YAG	2.0	2.5 10-9
Λ-0.200 μΠ	6.0	2.2 10-8

with $\phi = 0$.

θ [rad]	1 –(cosφcosθ)²
1 10-4	0.9 10-8
2 10-4	4.0 10-8
4 10-4	1.6 10-7
5 10-4	2.5 10-7
8 10-4	6.4 10-7
1 10-3	1.0 10-6
5 10-3	2.5 10-5

H.Juergen Schreiber DESY 23.05.2005

From comparison of the two tables, some lessons follow:

- if CO_2 is used
- if Nd:YAG (λ=1.064 μm)
 is used

 $\Omega^2 >> 1 - (\cos \varphi \cos \theta)^2$

- low B-fields of < 0.5 T require θ < 5.10⁻⁴ rad;
- larger B-fields (~6 T) allow to increase θ up to 5 mrad
- low B-fields of < 0.5 T require very small θ, significantly below 10⁻⁴ rad;
 with increasing B-field, θ can be larger, e.g. B=6 T, θ=5·10⁻⁴ rad
- if Nd:YAG (λ =0.266 µm) only large B-fields (> 5 T) in conjunction with very small θ (<10⁻⁴ rad) are allowed
- in many discussions Robert M. applied the condition

which is only rarely fulfilled, → avoid its general application ! (or check it for a given set of parameters)

What about the constraints to estimate the intensity of the Resonance Absorption process ?

Two constraints were used:
$$\xi << 1$$
 and $\omega/2\omega_c << \gamma_0$?

If absorption occurs within the B-field, the electron gets some acceleration. If the number of photons absorbed by an electron is denoted by n_v

The **energy growth of the electrons** near the resonance condition can be expressed by

$$E_b - E_b^0 \cong n_{\gamma} E_{\gamma} \approx mc^2 \xi \omega \sqrt{\frac{2\Omega}{\gamma_0}} \cdot t_i$$

where $\xi = e\varepsilon/mc\omega$ a non-dimensional parameter of the laser intensity, with $\xi << 1$! ε = amplitude of energy vector of the laser [V/cm] ω = frequency of the laser $\omega_c = eB/m$ } with $\omega/2\omega_c << \gamma_0$

> H.Juergen Schreiber DESY 23.05.2005

Using - CO₂ and Nd:YAG laser (infrared ... ultraviolet)

- E_b = 45, 250 and 500 GeV
- B-fields = 0.5 6 T
- magnet lengths = 50 ... 100 cm

and conclude:

 \bigwedge

- the ultraviolet Nd:YAG laser violates this constraint for low B-fields (< 2 T or so) at all beam energies.
 If one intends to use such a laser, the B > 5 T.
- if the infrared Nd:YAG or the CO₂ laser will be used, the constraint is appr. fulfilled.

Laser	B [T]	ω/2ω _c	E_{b} / γ_{0}	
	0.5	1000	45 / 8.8 10 4	
CO ₂	2.0	250	250 / 4.9 10 5	
	6.0	83	500 / 9.8 10 5	
	0.5	1.0 10 4	45 / 8.8 10 4	
Nd:YAG	2.0	2.6 10 3	250 / 4.9 10 5	
Λ=1.064 μm	6.0	857	500 / 9.8 10 5	
	0.5	4.0 10 5	45 / 8.8 10 4	
Nd:YAG	2.0	1.0 10 5	250 / 4.9 10 5	
Λ=0.266 μm	6.0	3.4 10 3	500 / 9.8 10 5	

Laser power needed to achieve RA ?

[[}}

We require $n_{\gamma} = 1$ (in a classical approach)

$$\xi = \frac{\lambda_c}{L} \sqrt{\frac{\gamma_0}{2\Omega}} = \frac{\lambda_c}{L} \sqrt{\frac{\gamma_0 m\omega}{2eB}} \left[\cdot \mathbf{n}_{\mathbf{y}} (=1) \right]$$

Remember, ξ is proportional to the laser energy vector and hence proportional to the square of the laser power

$$Power_{\min}\left[\frac{W}{cm^2}\right] \cong \left[\frac{\varepsilon[V/cm]}{19.4}\right]^2$$

i.e., the min laser power required scales with:

The number of incident laser photons related to the laser power is

$$N_{I,\gamma}\left[cm^{-2} \sec^{-1}\right] = \frac{Power[W/cm^{2}]}{E_{\gamma}[eV]} * \frac{1}{1.6022 \cdot 10^{-19}}$$

Conversion factor to Joule

23.05.2005

6

1/λ³ (ω³)

- 1/ L² - 1/B

E_b

Θ,φ dependence

For a **CO**₂ laser:

min. N_{I, γ} [cm⁻² sec⁻¹] ranges between 1.5 10¹⁸ ... 7.2 10²⁰ in dependence on γ_0 , L, B-field:

- with increasing E_b , $N_{I,v}$ increases
- shorter magnets needs more N_{Lv}
- smaller B-field require more N_{Lv}

$$\begin{array}{c|c} \underline{\text{Examples:}} & E_{b} = 50 \; \text{GeV}, \quad L = 100 \; \text{cm}, \quad B = 2 \; T \; \rightarrow \; & \mathsf{N}_{I,\gamma} = 4.5 \; 10^{18} \\ & E_{b} = 250 \; \text{GeV}, \; L = 100 \; \text{cm}, \quad B = 2 \; T \; \rightarrow \; & \mathsf{N}_{I,\gamma} = 2.3 \; 10^{19} \\ & E_{b} = 250 \; \text{GeV}, \; L = 100 \; \text{cm}, \; & \mathsf{B} = 6 \; T \; \rightarrow \; & \mathsf{N}_{I,\gamma} = 7.5 \; 10^{18} \end{array}$$

For a *Nd:YAG* (infrared) laser:

min. N_{I,v} [cm⁻² sec⁻¹] ranges between 1.5 10²⁰... 7.2 10²²

$$\begin{array}{cccc} \underline{\text{Examples:}} & \text{E}_{\text{b}} = & 50 \text{ GeV}, \text{ L} = & 100 \text{ cm}, & \text{B} = & 2 \text{ T} & \rightarrow & \text{N}_{\text{l},\text{Y}} = & 4.5 \text{ } 10^{20} \\ & \text{E}_{\text{b}} = & 250 \text{ GeV}, \text{ L} = & 100 \text{ cm}, & \text{B} = & 2 \text{ T} & \rightarrow & \text{N}_{\text{l},\text{Y}} = & 2.3 \text{ } 10^{21} \\ & \text{E}_{\text{b}} = & 250 \text{ GeV}, \text{ L} = & 100 \text{ cm}, & \text{B} = & 6 \text{ T} & \rightarrow & \text{N}_{\text{l},\text{Y}} = & 7.4 \text{ } 10^{20} \end{array}$$

So far, min. N_{I,v} is given in cm⁻²·sec⁻¹, but in practice we are forced

- to reduce the laser spot size

- should account for a 'pulsed' laser

$$\mathbb{N}_{I,\gamma} = N_{I,\gamma} [cm^{-2} sec^{-1}] \cdot S \cdot T$$

with **S**, the laser spot size in [cm²] and **T**, the laser pulse length, in [sec]

For a CO_2 laser with T = 1 msec pulse length \rightarrow

$$\rightarrow$$
 N_{I,v}^{min} = (1.5 10¹⁵ ... 7.2 10¹⁷) · S

For a *Nd:YAG* laser with the option of much shorter pulse lengths (100 ... 50 ... 10 psec) $\rightarrow N_{I,v}^{min} = (1.5 \ 10^9 \ ... \ 7.2 \ 10^{11}) \cdot S$

(for a **10 psec** long laser pulse)

so that with N_e /bunch = 2 10¹⁰ at ILC \rightarrow all laser photons might be absorbed for a perfect overlap of the laser with the electron beam (?)

But what about the laser spot size S?

CO₂ laser (λ=10.6 μm)

E _b [GeV]	Yo	L [cm]	B [T]	ξ	ε [V/cm] needed	min. power [W/cm²]	Ν _{I,γ} [cm ⁻² s ⁻¹]
		100	2.0	1.93 10 -9	5.63	0.085	4.53 10 18
		100	0.5	3.86 10 -9	11.26	0.337	1.80 10 19
50	1 10 5	100	6.0	1.12 10 -9	3.27	0.028	1.49 10 18
		50	2.0	3.86 10 -9	11.26	0.337	1.80 10 19
		50	0.5	7.72 10 -9	2.52	1.348	7.19 10 19
		50	6.0	2.24 10 -9	6.54	0.114	6.10 10 18
		100	2.0	4.32 10 -9	12.61	0.422	2.25 10 19
		100	0.5	8.63 10 -9	25.18	1.685	8.98 10 19
250	5 10 5	100	6.0	2.50 10 -9	7.30	0.141	7.52 10 18
		50	2.0	8.63 10 -9	25.18	1.685	8.98 10 19
		50	0.5	17.3 10 -9	50.36	6.740	35.9 10 19
		50	6.0	5.01 10 -9	14.62	0.568	3.03 10 19
		100	2.0	6.10 10 -9	17.79	0.841	4.48 10 19
		100	0.5	12.2 10 -9	35.58	3.364	17.9 10 19
500	1 10 6	100	6.0	3.54 10 -9	10.33	0.284	1.52 10 19
		50	2.0	8.63 10-9	25.18	3.370	18.0 10 19
		50	0.5	17.3 10 -9	50.36	13.48	71.9 10 19
		50	6.0	5.01 10 -9	14.62	1.140	6.08 10 19

Nd:YAG laser (infrared with λ =0.1064 µm)

E _b [GeV]	Yo	L [cm]	В [Т]	ξ	ε [V/cm] needed	min. power [W/cm²]	Ν _{ι,γ} [cm ⁻² s ⁻¹]
		100	0.5	1.22 10 -8	354.2	333.35	17.85 10 20
		100	2.0	0.61 10 -8	177.1	83.34	4.47 10 20
50	1 10 5	100	6.0	0.35 10 -9	101.6	27.44	1.47 10 20
		50	0.5	2.44 10-8	708.4	1334.0	71.5 10 20
		50	2.0.	1.22 10 -8	216.1	124.1	6.65 10 20
		50	6.0	0.71 10 -8	206.1	112.9	6.05 10 20
		100	0.5				
		100	2.0.				
250	5 10 5	100	6.0	*√5		*5	
		50	0.5				
		50	2.0				
		50	6.0				
		100	0.5	V			
		100	2.0				
500	1 10 6	100	6.0	*√10		*10	
		50	0.5				
		50	2.0				
		50	6.0				

Laser spot size / laser emittance

Spot size of the laser within the magnet: σ_{xy} , σ_{yy}

 $\sigma_{x\gamma,y\gamma}$ can be expressed in terms of emittance of the laser $\varepsilon_{x,y}$ and its angular aperture $\theta_{x,y}$

 $\sigma_{x\gamma,y\gamma} = \frac{\varepsilon_{x,y}}{\theta_{x,y}} = \frac{f}{a_{x,y}} \cdot \varepsilon_{x,y} \quad (\text{at small } \theta_{x,y})$

 $a_{x,y}$ – effective half aperture of laser beam

- **focal length** (~ f' in the fig.)
- $\Theta_{x.y}$ angular half aperture of laser; it is not the angle between e⁻ beam and laser, (*a* being in the order of few mm)

Now, the best possible emittance of a perfect laser is limited by laws of optics:

$$\varepsilon_{x.y}^{\min} = \frac{\lambda}{4\pi}$$

$\sigma_{x,y}^{min}$ is proportional to the focal length f and the min. emittance ε^{min} but inverse proportional to the effective half aperture a

Examples:

wavelength [µm]	f [m]	a [mm]	σ ^{min} [μm]
CO ₂ λ = 10.6	3	3	844 <u>!</u>
	10	6	1407 <u>!</u>
	10	3	2814 <u>!</u>
<i>Nd:YAG</i> λ = 0.1064	3	3	85
	10	6	141
	10	3	285
λ = 0.532	3	3	42
	10	6	71
	10	3	142
λ = 0.266	3	3	21
	10	6	35
	10	3	70

In practice, however, the spot size is typically two times larger

If CO_2 : to reach a spot size of $\sigma = 500 \ \mu m$ or less, $\rightarrow f < 3 \ m$ and $a \le 3 \ mm$; but θ is then large (few $\cdot 10^{-3} \ rad !$)

Basic resonance condition $\Omega^2 \ge 1 - (\cos \varphi \cos \theta)^2$

ok?

H.Juergen Schreiber DESY 23.05.2005

Large vs. small θ , as seen from an other point of view:

The laser should cross the electron beam with θ over the *total length L of the magnet* in some optimized way

Aim: ensure that the electron bunch remains in overlap with the laser spot. Due to some Gaussian intensity distribution of the laser photons, $keep \Delta_L small$ (to about $\frac{1}{4} \dots \frac{1}{2}$ of the laser spot size) \rightarrow good absorption rate

If one needs a small laser spot size \rightarrow avoid $\theta \sim 10^{-3}$ rad, even for very short magnets.

If however θ should large (~1 mrad), \rightarrow account for a large laser spot size (~1 mm) or short magnet (~25 cm)

> H.Juergen Schreiber DESY 23.05.2005

Begin of magnet

End of magnet

Θ [rad]	L = 1 m	L = 0.5 m	L = 0.25 m
1 10 ⁻³	1000	500	250
5 10 ⁻⁴	500	250	125
1 10 ⁻⁴	250	50	25

Vertical vs. horizontal beam crossing ?

- the size of the laser focus dominates over the electron beam size
- the electron beam is flat, i.e. $\sigma_x >> \sigma_y$, and one should probably locate the set-up at large beam sizes (resp. at large β -functions)
- less radiation (SR) is expected above and below the electron beam line

vertical beam crossing is preferred

Significance of the RA method

The number of absorbed photons, n_v , is considered as an *ideal number*

Strictly speaking, the *RA condition is 'never' fulfilled*.

It is only a mathematical relation between some quantities, *with the answer YES or NO* for a given set of input, and *NO* is the usual answer:

$$\gamma_0 = \frac{\Omega \pm \cos \varphi \cos \theta \sqrt{\Omega^2 - (1 - \cos \varphi^2 \cos \theta^2)}}{1 - \cos \varphi^2 \cos \theta^2}$$

We need some convolution of the resonance absorption condition with the possible (Gaussian ?) spreads of all involved quantities, E_b , θ , φ , ω and B

The *same argument* holds for the *estimation of n_v*, the number of absorbed laser photons

- \rightarrow realistic n_v^{real} is obtained after convolution with exp. spread expected for
 - $E_b, \theta, \varphi, \omega$ and B

- $n_{\gamma}^{real} < n_{\gamma}$ but how much smaller?
 - is it below the threshold of a possible laser ray detector ?

Needs to be evaluated

 \bigcirc

Divergence of the laser and electron beams

Assume - a **perfect aligned electron beam** with no divergence;

 $\rightarrow \phi_i$ for each electron are all identical

- the laser has some divergence governed by optical laws;

 $\rightarrow \theta_i$ for each photon vary within a certain range

from Karlheinz

Relative Energy Error vs dTheta

- Some problems related to the Resonance Absorption method were indicated; many questions were not at all discussed (e.g. stability issues, laser light detector, the 'best' position within the BDS, data taking strategies, ...)
- Some of them might be solved in a reasonable manner, but require both theoretical and experimental effort
- The divergence of the laser beam (as well as that of the electron beam) is the most serious problem in order to achieve a beam energy precision of 10⁻⁴ or better
- To solve this basic problem laser experts have to be consulted immediately
- Any volunteers ?

H.Juergen Schreiber DESY 23.05.2005