E-Measurement by Synchrotron Radiation

(some rough ideas) K.Hiller, DESY Zeuthen on the Yerevan Meeting 2005

E= 250 GeV, BI = 0.4 Tm, σ_{BPM} = 200 nm \rightarrow dE/E ~ 5 x 10⁻⁵

E – measurement is based on precise angular measurement

Synchrotron Radiation Fan

3 radiation fans cover exactly the electron bending angle \rightarrow Measurement of fan edges determine electron energy

Synchrotron Radiation Spectrum

Critical energy: 50% of power

$$E_{crit}[keV] = 0.665 \cdot B[T] \cdot E^2[GeV]$$

250 GeV, 0.5 mrad or 0.4 Tm \rightarrow E_{crit}= 16.6 MeV

Radiation Fan along the Beam

Beam tube R = 10 mm Thickness 2 mm steel

→Radiation fan at BPM positions inside tube

→Touch the steel walls downstreams of ~ 40m

Radiation Fan at 50 m

Most photons still Inside the beam tube

Especially left edge Not visible !

Radiation Fan at 90m

Both edges visible outside the beam tube

Radiation Fan at 90m (2)

E/GeV Width/mm 247.5 71.4 252.5 70.0

→ Sensitivity 1.4 mm / 5 GeV

The Influence of the Walls

2 mm steel tube deteriorates resolution

Selection of 10 -100 keV photons changes not much

- Enlarge tube diameter $R = 1 \text{ cm} \rightarrow 4 \text{ cm}$
- Install 2 Roman pots with thin ~ 300 μm steel windows
- Insert position sensitive radiation detectors

Detection of X-Rays

X-rays have no electric charge and cannot directly detected:

- →1) use scintillators to get low energetic photons of 200 – 1000 nm which match sensitivity of PMT or photodiode
- →2) convert X-rays into electrons/positrons which produce electron-hole pairs by Coulomb interaction, and collect their charge

ž – A T	Photoelectric	Compton	Pair Production
interacts with	bound electron	"free" electron	atomic nucleus
energy range	<100 keV	~100 keV - 10 MeV	>1.02 MeV (pred >10 MeV
energy variation	I/E ³	I/E	E
Z variation	~Z ³	none	Z

Hamamatsu CCD

CCD

Charged-Coupled Devices (CCDs) are solid-state image sensors that provide low light level detection, with high signal-to-noise ratio and wide dynamic range. The vast majority of our CCDs are full frame transfer devices with 100% fill factor. We offer scientific grade CCDs including a unique back-thinned (BT-CCD) device featuring 90% quantum efficiency (QE). The back-thinned CCD has high QE from the near infrared to the vacuum UV region of the

spectrum and it can even directly detect X-rays with energy below 0.5 keV. Front-illuminated CCDs can be used to directly detect X-rays up to 10 keV and X-rays over 100 keV can be imaged using fiber optic scintillators (FOS). Our CCD detectors are used in low light level imaging, raman spectroscopy, microscopy, non-destructive inspection, dental X-ray imaging and medical imaging.

 \rightarrow CCDs or other (thin) solid state detectors measure in the range < 100 keV

CCD Characteristics

dE = 109 eV at 5.9 keV (Fe55)
quantum efficiency > 10% at E < 10 keV
12 x 12 μm2 plus micro-mesh plate gives 1 ... 2 μm spatial resolution
drawback - slow readout in msec

Conclusions

Energy resolution : spatial resolution / sensitivity

dX	dE	dE / E	Feasibility
100 μm	357 MeV	1.4 10 ⁻³	\rightarrow possible with existing detectors
10 μm	36 MeV	1.4 10 ⁻⁴	\rightarrow in reach with some detector R&D
1 µm	4 Mev	1.4 10 ⁻⁵	\rightarrow probably a dream

- needs some 100m dedicated beam line free of magnets
- simple scheme using well-proven Roman Pot technology
- radiation detectors easy to exchange (radiation damage !)
- width of the radiation fan insensitive to changes of beam offsets and inclinations
- without calibration good for relative beam energy changes

Acknowledgement

Nor Amberd Station 2000m

i. or

Lake Sevan

Monastery Geghard

... thank you very much Robert and Valery for the meeting in such great surroundings.