High Precision Beam Position Monitor for the TESLA Spectrometer

Alexei Liapine TU-Berlin

Zeuthen, 17th March 2003

BPM in the Spectrometer

• the resolution of BPMs has to be higher than $1\mu m$ (100nm preferred)

• the dynamic range has to be possibly wide to avoid mecanical movement

• BPMs must work with a beam, which is not parallel to z-axis

BPM Proposal

The exitation of the dipole mode in a cylindrical cavity is proportional to the beam offset from the cavity center: $E_{110} = CJ_1(j_{11}r/R)\cos\phi$

BPM Proposal

In order to avoid the modes which are stronger than the dipole mode a mode-selective structure of the cavity is proposed.

BPM Proposal

The dipole mode TM110 couples to the lowest wave of the waveguide - TE01, while the monopole modes couple to the higher wave – TM11, which has a higher cut-off frequency. Therefore the monopole modes don't propagate in the waveguide. 17 March 2003

Angle-dependence

The dipole mode is also exited if the beam is not parallel to z-axis The ratio of two components: $\frac{\Delta V_{110}^{angle}}{\Delta V_{110}^{angle}} \approx i \frac{\theta}{kr} \left(1 - \frac{kl}{2} ctg \frac{kl}{2}\right)$

Closed monitor with the waveguides

Opened cavity

Antenna 17 March 2003

Contact inside the waveguide

Waveguide

Parameter	TM010	TM110
f, MHz	1010	1518
Q ₀	2110	1620
Q _{ext}	$\rightarrow \infty$	820
Damping time, ns	660	115
V _{in} , V	1450	4.0/mm
V _{out} , mV	9.3(0.005)/100µm of slot offset	0.06/100nm of beam offset
V _{noise} , µV		1.6
V _{angle} /V _{offset}		34 (0.5mrad, 100nm)

The cavity was tested with a network analyser in order to check its resonant frequency and the quality factor

Electronics

The electronics for the monitor is designed using the homodyne principle

The apperance of the electronics

Electronics

Characteristic of the position channel

Characteristic of the charge channel

Measurements with Electronics

6.000E-2

1. Linescan in wide range σ =180nm

2. Linescan in narrow range σ =20nm

3. Linescan after tuning σ =200nm in -1..+1mm

Conclusions

relative resolution is about 200nm
linear range is -1mm...+1mm
moderate mechanical tolerances
relative simple and cheap electronics
strong angle-dependent component
large and heavy

- hard to provide high vacuum

Alternatives

5.5 GHz cavity

+ smaller, easier to handle
+ weak angle-dependent component
+ stronger dipole mode signal
+ better time resolution
- critical production tolerances
- smaller linear range (250µm)
- more complicated electronics

Alternatives

We want to measure not the offset, but the angle Probably TE111-cavity is the right one for that purpose