4-magnet-version

ILC energy measurement by synchrotron radiation

K.Hiller, Zeuthen meeting, June 2007

New 4-magnet chicane

Old scheme	New scheme	
	M1 0.67 kG l=3.0 m	
M1 2.78 kG I=1.5 m	M2 -0.34 kG l=6.0 m	
M2 -2.78 kG l=3.0 m	M3 -0.34 kG l=6.0 m	
M3 2.78 kG l=1.5 m	M4 0.67 kG $l=3.0$ m	

- \rightarrow Due to smaller field strength bend is reduced 0.5 mrad to 0.24 mrad
- \rightarrow To obtain beam offset of 5mm spectrometer is more extended
- \rightarrow Gap between magnets now 16 m instead of 10 m before
- \rightarrow Additional 4 quadrupole magnets after chicane

Consequences for synchrotron photons

- \rightarrow photons per electron reduced $\sim 10 \rightarrow 4$
- \rightarrow photons more soft <2MeV> \rightarrow <0.8MeV>
- \rightarrow fan more squeezed from ~ 8 cm \rightarrow 3 cm (old detector position)
- → positions of mirrors and photon detectors should be changed

New beam kinematics, envelope ...

Envelope at IP: $\sigma_x / \sigma_y = 20 / 2 \mu m \rightarrow 23 / 3 \mu m$ → marginal influence on edge smearing

$\sigma_{px} =$	0 /	0.240	MeV
σ _{py} =	0 /	0.009	MeV
σ _{pz} =	375 /	163	MeV

Contribution to edge smearing reduced ...

Changes in positions

- Direct edge measurement → impossible due to radiation damage
 → mirrored edge measurement
- After chicane 4 quadrupole magnets: 60m 100 m
- New positions: mirror at 103 m (before 73m) photon detectors at 140 m (before 103 m)

The edge in the old scheme

Mirrors: $\varphi = 3mrad$ No dispersion $\Delta\beta = 0$

"Silicon-Detector" Z = 80 mPitch/binning = 25 μ m

Conclusion: $\Delta E / E = 10^{-3}$ clearly visible

Edge in 4-magnet scheme ...

250 GeV +- 250 MeV

Mirrors: φ = 3mrad dispersion $\Delta\beta$ = 1 arcsec

"Silicon-Detector" Z = 140 mPitch/binning = 25 μ m

 $\Delta E / E = 10^{-3}$ badly visible

Resolution gets worse as a consequence of the reduced field

Edge smearing contributions

	Old Scheme length ~ 80 m	New scheme length ~ 100m
 angular spread of synchrotron radiation hard / soft photons = 2 / 12 μrad transverse beam size 	160/960 μm	210 / 1250 μm
	20 µm	20 µm
3) beam energy spread 1.5 10 ⁻³ (0.7 10-3) 4) fringe field 1% 5) mirror reflection error 0.1 – 1.0 arcsec	40 μm 200 μm 15 – 150 μm	20 μm 100 μm 15 – 150 μm

edge smearing of 300 ... 1000 μ m in dependence on soft/hard photon and mirror quality not much changed

Edge smearing – detector size

1 mm total smearing

needs ~ few mm detector size

Sensitivity and Energy Resolution

1) Sensitivity: old 320 μ m / GeV \rightarrow new 200 μ m /GeV related to lower field strength

2) Energy resolution: $(\Delta E/E) = \sqrt{(\Delta Bl/Bl)^2 + (\Delta \Theta/\Theta)^2}$

2.1 magnetic field

old scheme $\Delta BI/BI = 2 \ 10^{-5}$ new scheme BI reduced by ~ factor $10 \rightarrow \Delta BI / BI = 2 \ 10^{-4}$??? Nikolai

2.2 spatial resolution

 $\Delta \Theta / \Theta = 2\Delta x / \Theta L_{tot}$

assume $\Delta x = 2 \ \mu m$ old scheme $\Delta \Theta / \Theta = 5 \ 10^{-5}$ new scheme = 8 10^{-5}

New 4-magnet scheme deteriorate the E-resolution

Set-up for synchrotron radiation enlarged \sim 100 m \rightarrow 150 m

Lower magnetic field reduces E-resolution by ~ factor 2