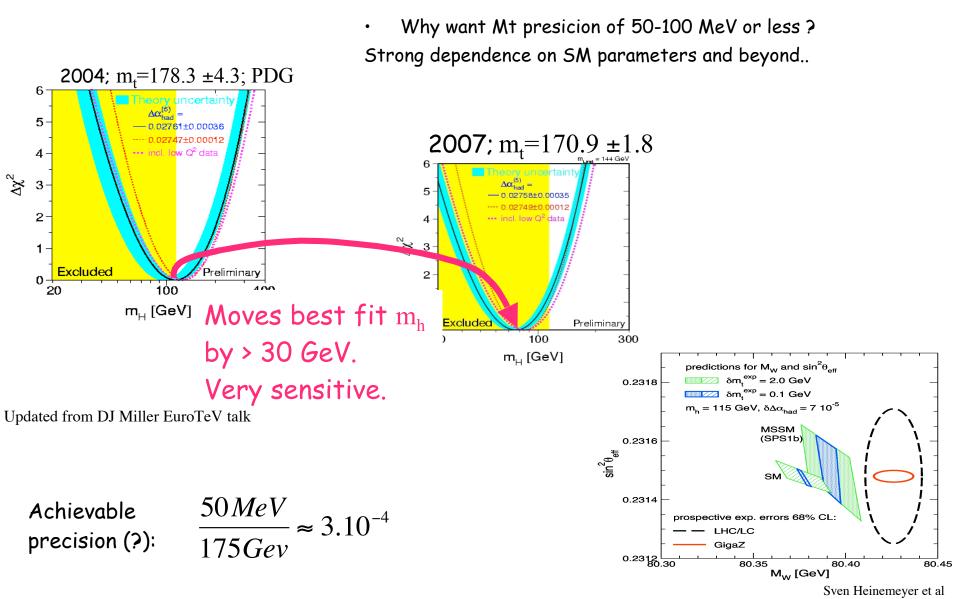


Precision Top Quark Threshold Measurements at the ILC

(or another motivation for precision energy spectrometry)

Filimon Gournaris

University College London

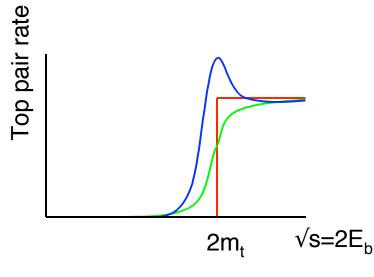

Stewart T. Boogert Royal Holloway, University of London

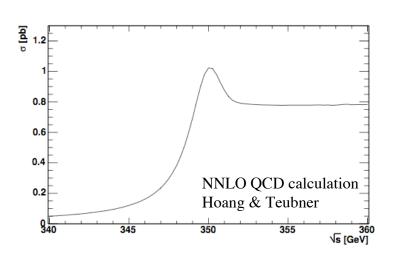
06/06/2007 Energy Spectrometry Workshop DESY Zeuthen

Talk Outline

- Introduction
 - Why so precise top measurements?
 - ttbar threshold @ ILC
 - luminosity spectrum
- Threshold Simulations
 - what we have
 - ttbar threshold total cross-section simulations
 - Luminosity spectrum extraction
 - what we need
 - Full MC based ttbar threshold analysis
 - Complete understanding of luminosity spectrum impact and extraction related systematics
 - Precise absolute energy measurements
- Summary and outlook..

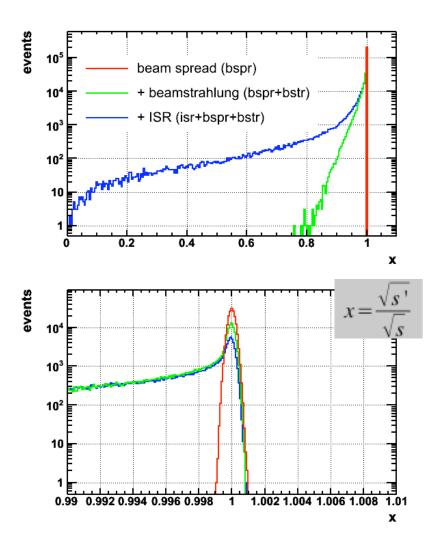
Why top quark precision?




Zeuthen - 06/06/07

3

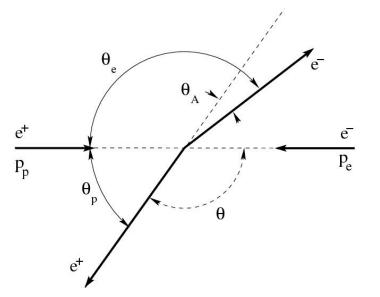
ttbar threshold @ the ILC


- One of the important ILC physics targets.
- At the ILC top quarks offer a unique QCD system :
 - Perturbative (non relativistic) QCD applicable since $\Gamma_{t} > \Lambda_{QCD}$ -> no hadronization.
 - Classically cannot be produced when total energy $< 2m_{t}$
 - Quantum effects smear sharp threshold
 - Binding between top and anti-top
 - Also clean experimental environment, well understood backgrounds
- Best direct measurement of top mass will be at the ttbar threshold.
 - Vary the beam energy (Precisely measure the beam energy)
 - Count the number of top-antitop events
 - Precision on beam energy goes directly into the measurement
- Total cross-section sensitive to M_{t} , Γ_{t} , α_{s} .
 - Can extract information about α_{s} and top-Yukawa coupling
- Complications arise due to the luminosity spectrum

Luminosity Spectrum

- At the ILC the beam energy at the IP gets smeared by various energy loss mechanisms
- Centre of mass energy variation, three main sources:
 - Initial State Radiation (ISR)
 - Calculable to high precision in QED
 - Accelerator Beam Spread
 - Intrinsic machine energy spread, typically (Gaussian !?) ~0.1 %
 - Beamstrahlung
 - Beam-beam effect due to strong bunch magnetic fields, causing electrons to radiate.
 - ~1%
 - Cannot be analytically calculated, need to trust complicated plasma physics based simulations (GuineaPig, CAIN etc)
- Can only simulate through GuineaPig/CAIN or parametrize with beamstrahlung function (circe etc) based on simulated data

Luminosity Spectrum Extraction : Bhabha Acolinearity



- Bhabha scattering to monitor lumi spectrum
 - e⁺e⁻-> e⁺e⁻(n)γ
 - High enough rate compared to top threshold
 - Only monitors x distribution, for absolute energy scale need energy spectrometers
- Two approximate reconstruction methods:
 - Only uses angles of scattered electron and positron
 - Based on assumption of single photon radiation
 - Frary-Miller

$$x = 1 - \frac{\theta_A}{2\sin\bar{\theta}}$$

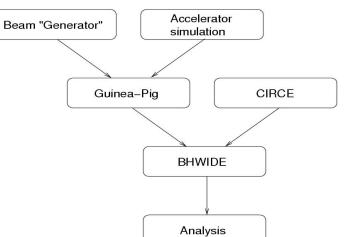
- K. Mönig

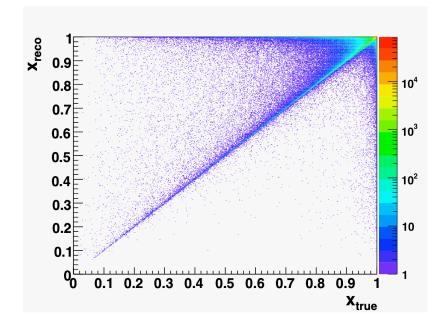
$$x = \sqrt{\cot \frac{\theta_p}{2} \cot \frac{\theta_e}{2}}$$

Zeuthen - 06/06/07

Beam "Genera

F.Gournaris

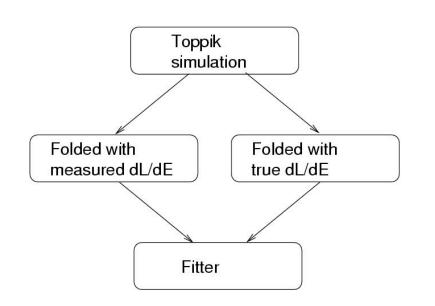

Simulation (for spectrum extraction)


Define accelerator beam (linac simulation?)

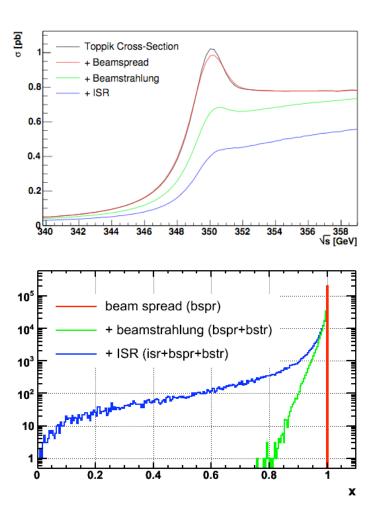
Simulation :

•

- Simulate beam-beam effects
 - Get beamstrahlung from GuineaPig and/or parametrize (CIRCE)
- Generate bhabha scattering with BHWIDE (BHabha WIDE angle monte carlo)
- Apply beam-beam effects to bhabhas
- Analyze / Extract spectrum

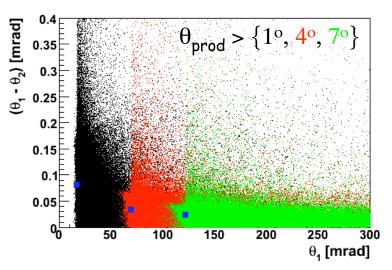


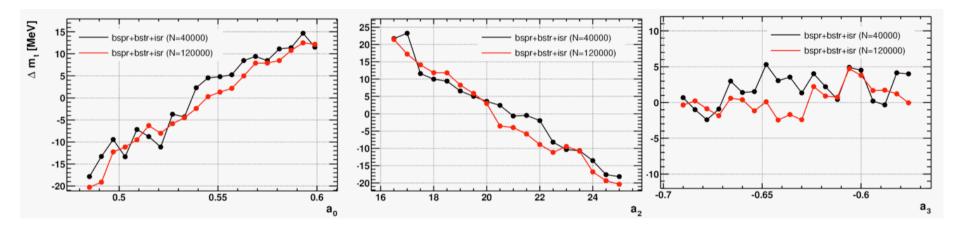
7


ttbar threshold simulations

• The luminosity spectrum effectively smears the ttbar threshold cross-section.

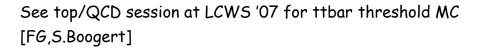
$$\frac{d\sigma_{obs}^{e^+e^-}}{d\Omega}(\sqrt{s}) = \int_0^1 dx_1 dx_2 D_{e^+e^-}(x_1, x_2, \sqrt{s}) \frac{d\sigma^{e^+e^-}}{d\Omega'}(x_1, x_2, \sqrt{s})$$

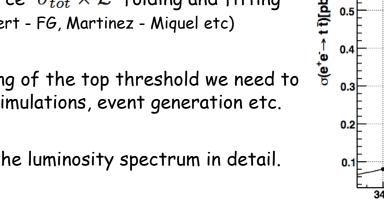



• For extracting precise physics measurements using a threshold scan, precise knowledge of the luminosity spectrum is needed.

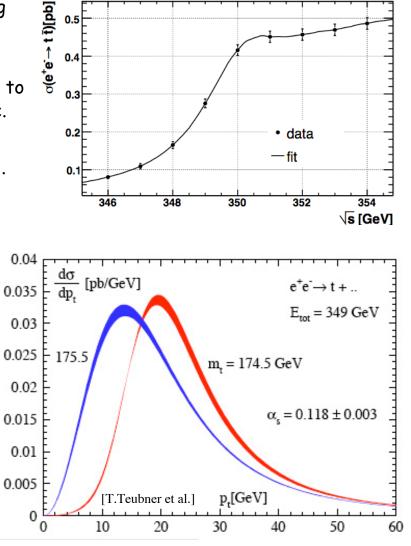
Extraction Systematics Impact

- Recent study showed that luminosity spectrum extraction techique is not influenced by potential systemetic effects including: (see talk by FG at LAL-MDI meeting 29/3/07)
 - EM deflections of Bhabhas due to bunch field
 - Migration of events into/out of detector acceptance
 - Computational parameters in simulation (GuineaPig) etc..
- Older study by S.Boogert (LCWS '05 Paris) shows that small variations in beamstrahlung spectrum don't have a large effect on $M_{\rm t}$ measurements





Up to now only 'brute force' $\sigma_{tot} \times \mathcal{L}$ folding and fitting simulations exist (S.Boogert - FG, Martinez - Miguel etc)

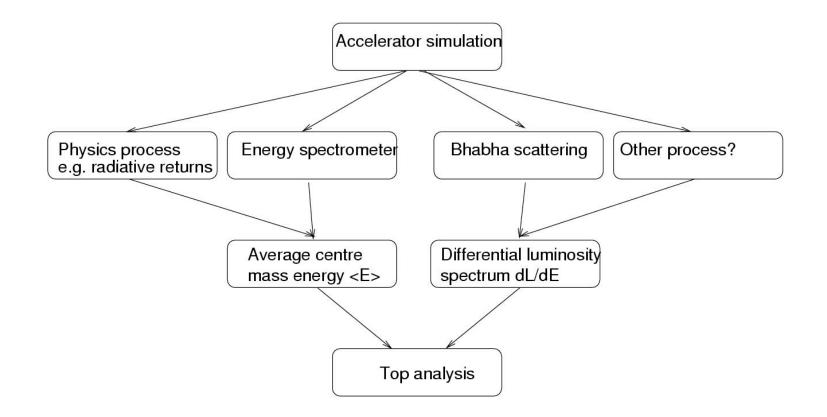

Updates in ttbar threshold simulations

- For precise understanding of the top threshold we need to ٠ go to fully differential simulations, event generation etc.
- Can see the effects of the luminosity spectrum in detail. ٠
- Top momentum distribution sensitive to M_{\star} and α_{\star} ٠
 - Gives info independent of Γ_{+} measurement.
 - Different correlations than in σ_{tot}
 - Need to use both σ_{tot} and $\frac{d\sigma}{d\sigma}$ to dp_t M_{+} and α_{-}
 - A_{FR} independent of M_{t} , sensitive to α_{s} and Γ_{t} .
- Sensitivity to Z, W, γ couplings : ٠
 - Affect angular distributions and top polarization
 - Anomalous couplings -> EW/QCD effects (new physics ?)

mec

Zeuthen - 06/06/07

Summary and Outlook


- From current status of top threshold studies it seems that the systematic effects from luminosity spectrum extraction are under control (as always devil is in the detail..)
- Largest contribution to the measurement will come from determination of the absolute beam energy.
- The luminosity spectrum extraction only provides the x distribution but not what x is !!
- The precision of the beam energy measurements will dictate the precision that the top threshold measurements can reach...
- A 50MeV measurement of M_t translates into:

$$\frac{50\,MeV}{175Gev} \approx 3.10^{-4}$$

which means energy measurement precision should be greater or equal..

- Investigation under way to define :
 - Effect of luminosity spectrum in a fully differential analysis
 - Finalize luminosity spectrum extraction study by performing the full simulation (including detector effects) of the bhabha samples
 - Precision the measurement can reach that will need to be matched by the spectrometers
- Most arguments above about precision energy measurements required for the top threshold apply for most other threshold scan measurements (W+W-, SUSY etc) @ the ILC...

