BEAM ENERGY SPECTROMETER

DESY – Dubna – TU Berlin

Machine physicists, engineers, particle physicists

Significant overlap with other efforts

Accelerator, Beam Delivery,

Detector Groups, Physics Groups

Goal

Technical Design Report for Energy Spectrometer

\Rightarrow Spring 2004

Energy Precision needed:

(dictated by Physics)

o Target (1-2) x 10⁻⁴ for $\Delta E_b/E_b$

from 2 m_{top} < $\sqrt{s} \le$ 1 TeV

 $ightarrow \Delta m_{top}, \, \Delta m_{H} \, \sim 50 \; MeV$

o Recognize 5×10^{-5} at $\sqrt{s} = 2 m_w$

 $\rightarrow \Delta m_W \sim 6 \text{ MeV}$

o New Z line shape scan

$$\Delta E_{\rm b}/E_{\rm b} \sim 10^{-5}$$
 (-10⁻⁶)

Questions / Comments

- Can basic requirements on precision be achieved?
- Extrapolation of existing devices or clever new ideas needed?
- Energy, energy width (after IP) needed?
- Redundant measurement(s) necessary? (cross-checks / different technique(s))
- •
- •
- •
- .
- Default energy: E_b = 250 GeV cover also extreme cases: 45 GeV 400 GeV

Techniques proposed

Beam Instrumentation

BPM – based Spectrometer

- In-beam line spectrometer with fixed bending angle
- BPMs used to measure beam position \Rightarrow bending angle

$$E_b \propto \frac{1}{\theta} \int B dl$$

TESLA: large bunch spacing ~ 330 ns (~ 180 ns)

 \oplus

fast high-precision BPMs

 $\Rightarrow E_{b}$ (e⁺/e⁻) for each bunch

➢ BPMs

Alignment / Stability

Position of the spectrometer within the BDS:

- Diagnostic section
- Final Focus Section,

but ~ 150 m upstream of IP

- Space required: 30 50 m
- also, aspect ratio $\sigma_x/\sigma_y = 30 100$ since $\sigma_v \sim$ few microns

 $\Rightarrow \sigma_x \leq 40 \ \mu m$

- account for the spectrometer during design phase of BDS!
- impact to the lattice design:

 \Rightarrow negligible

Spectrometer Magnet

The 3D view of the spectrometer magnet (the sizes are in mm)

- C-shaped iron magnet
- length = 3 m; gap height = 35 mm; θ_{bend} = 1 mrad

Question: iron vs. superconducting? no expertise of ,cold' magnets

- volunteer -

Table: Basic spectrometers magnet parameters

	SLC	LEP	CEBAF	TESLA (Proposal)
Energy E (GeV)	42 - 50	40 - 100	0.5 - 7	45 - 400
Absolute accuracy of energy	5×10 ⁻⁴	1×10 -4	1×10 ⁻⁴	1×10 ⁻⁴ -
measurement $\Delta E/E$ Bending angle (mrad)	18.286	3.75		1×10-5 1
Magnetic field range (T)	0.88 - 1.1	0.086 - 0.216	0.04 - 0.6	0.05 - 0.44
Magnetic field integral (T•m)	2.56 - 3.05	0.5 - 1.242	0.12 - 1.8	0.15 - 1.33
Magnetic measurement error of the field integral (relative)	7× 10 -5	3×10 ⁻⁵	1× 10 -5	3×10 ⁻⁵
Magnet iron length (m)	2.5	5.75	3	3
Effective magnet length (m)				3.045
Gap height (mm)	31.7	100	25.4	35
Magnet type	Н	С	С	С
Laboratory B•dl measurement technique	Moving wire, moving probe (NMR, Hall)	Moving probe (NMR, Hall), search coil	NMR probe, 2 search coils	Should be estimated
Operational JB•dl measurement technique	Flip coil, fixed probes (NMR)	Fixed probes (NMR)		Should be estimated
Energy loss due to synchrotron radiation (max) (MeV)		3.55		120

 $B_0=f(L_{mag})$ relations for the TESLA spectrometer magnet

Now, geometrical distortions were inserted to the magnet geometry

The scheme of the magnet geometry distortions.

\Rightarrow most important parallelism tolerance of the poles $$\le 0.02 \text{ mm}$$ for $B/B_0 \le 1x10^{\text{-5}}$

⇒ Requires careful design and manufacturing

Summary:

- Field uniformity $B/B_0 \le 1x10^{-5}$ over a common range of few mm in x, for $E_b = 45 \dots 250 \dots 400$ GeV
- Error for the magnetic field integral ∆B/B ≅ 1 x 10⁻⁵ (apply more than one measurement technique: NMR probes, search coils)
- Temperature stabilization $\Delta T \leq 1^{\circ}$
- Further activities:
 - 3 D calculations (MAFIA)
 - design for ancillary magnets
 - measurement techniques

BPMs

<u>Task:</u> Design fast, high-resolution monitor based on pillbox cavity approach

position resolution ~ 100 nm

Typical for a cavity monitor:

- a) Excitation of the TM_{010} and the TM_{110} -mode
- b) Amplitudes of the TM_{010} , TM_{110} and TM_{020} -modes as a function of frequency
- Only the dipole mode (TM₁₁₀) involves information on beam displacement
- This mode is very small $(TM_{010}/TM_{110} > 10^3)$
- Leakage TM₀₁₀ signal at the frequency of the dipole mode deteriorates the position resolution
- Our design:

y with slot couplings to waveguides in which only the dipole mode exists

Prototype I: dipole mode frequency 1.5 GHz • orf-behaviour confirmed • lab. measurements: $\sigma_x = 200 \text{ nm}$ over + 1mm $(\sigma_{x} = 40 \text{ nm})$ over \pm 150 µm) For several reasons. • dipole mode frequency $1.5 \text{ GHz} \Rightarrow 5.5 \text{ GHz}$ Prototype II lab. tests in-beam tests beginning 2004 Monitor calibration: • start with B-field off \Rightarrow extract constants for each monitor **B-field** on move monitors (spectrometer magnet?) to right positions and measure energy Do monitor constants change? (inclined beam trajectory!)

Needs careful understanding and solution

Jürgen Schreiber, ECFA/DESY LC workshop, Amsterdam, April 1-4, 2003

Besides the high-resolution BPMs we need reference monitor for two reasons:

- it provides LO frequency
- it provides the bunch charge

charge-independent

beam displacement possible

Reference Monitor

simple pill-box cavity monitor with

= 5.5 GHz high-resol. Frequency (TM_{010}) = Frequency (TM_{110}) ref.

Alignment / Stabilization

• Fast fibrations

dashed curves: relative motion of two points separated by 50 m

Solution: position the BPMs and the magnets on a common rigid girder

Slow ground motion

Schemes for alignment (global / local) including temperature stabilization for the spectrometer magnet have to be developed

Summary

basic parameters of the spectrometer as indicated in the TDR o.k.

New Ideas

Alexej Ljapine: new monitor which measures the angle and not the beam offset

Igor Meshkov, Evgeny Syresin:

Beam energy measurement by means

of the synchrotron radiation from the

spectrometer magnet $\Rightarrow \Delta E_b / E_b \cong 10^{-4}$