

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Some H.E.S.S. MWL results Observations of the Galactic Centre Region in Very High Energy Gamma-rays with H.E.S.S.

Gerd Pühlhofer (Landessternwarte Heidelberg) for the H.E.S.S. Collaboration

Why this topic here?

because

- complex region, well studied across all wavebands
- MWL studies are essential for interpretation of the VHE data
- results are fresh (first shown at ICRC '05)
- studies are finished for the moment -> "MWL results"

caveats

- only archival MWL data used
- no variability studies (except GC)
 -> no simultaneous observations in other wavebands

Preliminaries: some resolved VHE sources I

contours – X-ray: ASCA 1-3keV contours – X-ray: ROSAT 0.6-2.1keV

colour map – HESS: TeV

colour map – HESS: TeV

RX J1713-3946: shell-type SNR

MS H15-52: pulsar wind nebula

Preliminaries: some resolved VHE sources II

contours – X-ray: ASCA 1-3keV colour map – HESS: TeV

contours – X-ray: ROSAT 0.6-2.1keV colour map – HESS: TeV

- close match
 - same parent (e⁻) distribution?
 - × not neccessarily, spectral analysis prefers dominant π° -decay from p
- same parent (e⁻) distribution?

RA (hours)

Preliminaries: some resolved VHE sources III

• HESS J1825-137

- ~10% Crab Flux
- Γ = 2.4 ± 0.1
- ~40' long

X-ray nebula -

- is much smaller
- has much lower (<10%) energy flux
- but orientation is the same (North-South)
- B ~ 10 μG
- 1 keV synchrotron emission from 50 TeV electrons (if B = 10 µG)

Binned excess map

Generic Galactic 'SED': What about hadrons?

• Radio, millimetre, infra-red, optical, UV, X-ray, HE γ -ray, VHE γ -ray

Non-thermal radiation

- Synchrotron emission dominated by electrons
 - \propto electron density and B^2
- Inverse Compton scattering of electrons
 - \propto electron density and energy density of ambient photons
- Decay of π^0 s produced in hadronic interactions
 - $p + p \rightarrow p + \pi^{+/-}, \pi^0 \rightarrow \gamma\gamma$
 - ∞ CR density & matter density
- Strategy:
 - Measure X-ray & γ-ray

Synchrotron Radiation

- Estimate density (CO, CS, sub-mm, etc.)
- Infer energetic particle populations

 π^0 decay

Inverse Compton

The Galactic Centre

The GC region seen with H.E.S.S.

The GC region seen with H.E.S.S.

The GC region seen with H.E.S.S.

Sgr A East: Chandra & Radio Contours

Diffuse γs in H.E.S.S. data?

- 50 hour H.E.S.S. Observation of GC in 2005
- Need to subtract the two bright sources

Residuals after source subtraction

new source HESS J1745-303

High Energy γ-Ray (~ 100 MeV)

- Diffuse emission along the plane
 - CR interactions in the ISM
- few identified sources poor angular resolution

Diffuse γ-Rays from Cosmic Rays

- Cosmic ray interactions with the ISM medium lead to gamma-ray production via π^0 decay
 - eg EGRET (~ 100 MeV):

MeV – GeV – TeV extrapolation?

EGRET: MeV – GeV

GeV – TeV

+ diffuse TeV emission from the plane claimed recently by Milagro

Molecular Material in the Galaxy

- Atomic component is rather uniform but
- Molecular part (traced by CO) is strongly peaked along the plane and in the GC region
- assume π° -decay @TeV: CR interaction with gas

Dust and Molecules in the GC

 50 million solar masses in (dense) molecular clouds in the central 300 parsecs

CS contours over H.E.S.S. map

Integrated Latitude Slice

- Reasonable agreement in the region covered by CS measurements
- Close to a Gaussian with 0.2° RMS
 - CF PSF < 0.1°
 - Equivalent to ~30 parsecs
- 14.6 σ signal

...and In Longitude Bands

Longitudinal Slice

Reasonable agreement overall but

Deficit around I = 1.3°

Expectations

- Molecular target material is 3-8 10⁷ M_{sun} (Tsuboi – CS, SCUBA: 4-6 10⁷ M_{sun})
- Distance ~ 8.5 kpc
- Cosmic Ray density?
 - Assume Local
- π^0 decay flux...

Gamma Flux:

- J(> E) ≈ 1.5 × 10⁻¹³ (E/1TeV)^{1.75} (M₅/d²_{kpc}) photons cm⁻² s⁻¹
- (Aharonian 1991)
- Index: $\Gamma_{\gamma} \sim \Gamma_{CR}$
- ► For M₅ = 300 -800

Measured Diffuse Spectrum

- $\Gamma_{\gamma} = 2.29 \pm 0.07_{stat}$ $\pm 0.20_{sys}$
- Flux > 1 TeV:
 3.1 ± 0.3 × 10¹²
- cm⁻² s⁻¹ (13% Crab)

- Sgr B region
 - Γ_{γ} = 2.1 ± 0.2_{stat} ± 0.2_{sys}
 - Flux > 1 TeV:
 - 1.2 ± 0.2 × 10¹² cm⁻² s⁻¹ (5% Crab)

- The Galactic Centre Source: HESS J1745-290
 - (solid angle is integration radius used – source looks point-like)
- All emission in the GC has

Several possibilities exist

 Emission is a superposition of many individual 'active' gamma-ray sources, but

XClose correlation with molecular material

XNeed many (~7) unknown sources, eg. SNRs and/or PWN

- Or diffuse emission, caused by CR interactions
 - High energy CR density enhanced in the GC
 - 1) Additional CRs are accelerated by a population of sources in the region
 - 2) A single source (HESS J1745-290) accelerated most high energy (> 10 TeV) CRs in the central 200 parsecs
 - Same spectral index
 - Deficit in emission around I = 1.3°

A central accelerator?

Diffusion timescale

- Say D = η 10³⁰ cm² s⁻¹, η < 1
- $\eta = 1$ typical for TeV CRs in disc
- $t_{kyr} = (\theta / 0.54^{\circ})^2 / \eta$
- e.g. for $\theta = 1^{\circ}$ and $\eta \sim 0.4$, t = 10 kyrs

SNR Sgr A East

- ~10,000 year old supernova explosion
- unusually powerful 4 x 10⁵² ergs...
- Sgr A*
 - Hypothetical historical flare?
 - More recent flare suspected from X-ray observations of Sgr B2 (Compton Mirror)

- First measurement of gamma-ray emission from individual molecular clouds
- The Galactic Centre region seems to contain an excess of high energy cosmic rays
- MWL data are essential for the interpretation of this signal