

Cosmic rays at highest energies: Scientific objectives, status and plans for the future

Markus Roth Forschungszentrum Karlsruhe Markus.Roth@ik.fzk.de

- **Astrophysical motivation**
- **Pierre Auger Project and EUSO** ۲
 - **Experimental concept**
 - Status
 - Results
- Summary and outlook

Großgeräte der physikalischen Grundlagenforschung

Science Objectives

Fundamental questions

Contradicting measurements

- Primaries of energies >10²⁰eV exist Standard astrophysical models cannot account for such energies
- Complication (d > 20 Mpc): GZK cutoff E>5•10¹⁹eV $p + \gamma_{2.7K} \rightarrow \Delta^+ (1232) \rightarrow p + \pi^0 \rightarrow p\gamma\gamma$ $\rightarrow n + \pi^+ \rightarrow pe^+ v$
- If no GZK:
 - Nearby sources: GUT fossils (TD, DM, ...)
 - Propagation effects: violation of Lorentz invariance, Z-Bursts, ...

Near sources should be identified by point source astronomy

High magnetic rigidity of the primaries (charged particle astronomy)

Newest HIRES stereo data give even more contradicting results (W. Springer et al.; ICRC05)

Experimental Approach

- 1. Cosmic ray spectrum above 10¹⁹ eV: Shape of the spectrum in the region of the GZK cutoff
- 2. Arrival direction distribution: Search for departure from isotropy, point sources
- 3. Composition: Light or heavy nuclei, photons, neutrinos, exotics(?)

Study of GZK-Cutoff Requires Much Higher Statistics

The Pierre Auger Project

A new cosmic ray observatory designed for a high statistics study of the The Highest Energy Cosmic Rays Using Two Large Air Shower Detectors

Mendoza, Argentina (Auger South)

The Auger Collaboration

Participating Countries

Argentina Australia Bolivia* Brazil Czech Republic France Germany Aachen •Bonn •Karlsruhe •Siegen Wuppertal

Mexico Netherlands Poland Slovenia Spain United Kingdom USA Vietnam^{*} Italy

63 Institutions, 369 Collaborators

*Associate

The Hybrid Design

Surface detector array + Air fluorescence detectors A unique and powerful design

Nearly calorimetric energy calibration of the fluorescence detector transferred to the event gathering power of the surface array.

A complementary set of mass sensitive shower parameters (Xmax, risetime, radius of curvature, ...).

Different measurement techniques help understanding of systematic uncertainties

Improve of the angular and core position resolutions

Hybrid Design

Surface Array

- 1600 detector stations (995)
- 1.5 km spacing
- 3000 km²

Fluorescence Detectors

- 4 Telescope enclosures (3)
- 6 Telescopes per enclosure
- 24 Telescopes total (18)

Design Features

High statistics (aperture >7000 km² sr above 10¹⁹eV in each hemisphere)

2. Full sky coverage (S&N) with uniform exposure

3. Hybrid configuration surface array with fluorescence detector coverage

Thanks to Kai Daumiller for this movie!

The Surface Array Detector Station

Surface Detector Deployment

The Fluorescence Detector

The Fluorescence Detector Stations

poor mans fall back option :-)

K.-H. Kampert

Atmospheric Monitoring and Calibration

Atmospheric Monitoring

Lidar at each fluorescence eye

Atmospheric radio sounding measurements

Absolute Calibration

Drum for uniform camera illumination: end to end calibration

Example Event (48°, E~70 EeV)

Horizontal Showers

 $E \sim 5.10^{19} eV \theta = 82^{\circ}$

Horizontal Showers and Neutrinos

E > 10¹⁸ eV

Neutrino rate ~ 0.5 - 1 particle / year Depends strongly on the theoretical model

Cosmogenic Neutrino-Flux and Experimental Sensitivities

Stereo Hybrid Measurement

lg(E/eV)~19.1 (θ,φ)=(63.3, 148.9) deg

Stereo Hybrid Event: FD-Measurement

Stereo Hybrid Event: SD-Measurement

Event: 1364365

Triocular Event

Performance: Angular Resolution

0.6 degrees (mean)

- < 1.7° for 4 station events (3<E<10 EeV)
- < 1.4° for 5 or more station events (E>10 EeV)

Performance: Core Resolution

Hybrid – SD only core position

Core position resolution Hybrid: < 60 m Surface array: ~150 m

Laser position – Hybrid and FD only (m)

The First Data Set

Anisotropy: Galactic Center

excess flux AGASA: 4.5 σ Sugar: 2.9 σ

Φ_s<10.6 10⁻¹⁵ m⁻² s⁻¹

excludes neutron source at the GC

Photon Limit

Hybrid events: improved geometry fit

26% upper limit (95% CL) on CR photon fraction

Energy Determination (Conversion)

The energy converter:

Compare ground parameter S(1000, at 38°) with the fluorescence detector energy (CIC method)

Transfer the energy converter to the surface array only events

Log (E) = -0.79 + 1.06 Log(S₃₈) E = 0.16 S₃₈^{1.06} (E in EeV, S₃₈ in VEM)

Auger Energy Spectrum

$$\frac{dI}{d\ln(E)} = E\frac{dI}{dE}$$
 vs. Lg(E

Error bars on points indicate Poisson statistical uncertainty (or 95% CL upper limit) based on the number of events.

Systematic uncertainty is indicated by double arrows at two different energies. Horizontal: Systematic ∆E. Vertical: Exposure uncertainty.

A Big Event - One that got away!

Energy estimate >140 EeV

Comparison with HIRES, AGASA

AUGER: Energy scale uncertainty still large ~50 % at 100 EeV

Plans for Auger North

Needed: Full sky coverage

Colorado, USA has been selected as the northern site Funding proposals to be prepared over the next two years.

EUSO Science Goals

- Detection and investigation of the Extreme Energy Component of the Cosmic Radiation: EECRs / UHECRs with E > 5×10¹⁹ eV
- Arrival directions and small-scale clustering will provide information on the origin of the EECRs and inter-galactic magnetic fields.
- Open the Channel of High Energy Neutrino Astronomy to probe the boundaries of the Extreme Universe and to investigate the nature and distribution of the EECR sources

.....

Extreme Universe Space Observatory

EUSO Consortium - Institutes

>150 researchers

in 50 institutions in 6 countries in Europe, the USA, Japan and Brazil.

The Why's of a space-based detector for EECR

• Geometrical Factor (A $\cdot \Omega$) (FoV=±30° at ISS mean distance h_{ISS}=430km)

 $A^{geo} \approx 6 \times 10^5 \ km^2 \cdot sr$

 $\eta_{cycle} \approx 10 \div 25 \%$

$$A_{Euso}^{eff} \approx (6 \div 9) \times 10^4 \ km^2 \cdot sr$$

- Full Sky Coverage
- Cerenkov "footprint" of shower

The EUSO observational goal:

~ 1000 events/a in SuperGZK mode> 70 events/a in GZK-suppressed mode

Comparison of UHECR Experiments. Large encircled area: EUSO, small encircled area: AUGER. No duty cycle included. Ratio of effective geometrical factor (EUSO/AUGER): • including duty cycle (10% for both arrays): ~ 70

with duty cycle (10%) only for EU SO: ~7

Scientific Requirements:

- High statistics \Rightarrow large aperture
- Energy threshold as low as possible to allow a dynamical range overlap and cross-calibration with ground array (AUGER)

 \Rightarrow high sensitivity to faint showers, bkg. Rejection

• Pointing capability \Rightarrow direction resolution

Instrumental Requirements:

• Large aperture \Rightarrow FoV as large as possible

(±30° \Rightarrow ~6×10⁵km²sr from ISS mean orbit height)

• Sensitivity \Rightarrow High luminosity

(2.5m Ø collecting area, 5mm Ø PSF, f#<1.15, Q.E.>0.2 \Rightarrow ~50% efficiency at 5×10¹⁹eV, 100% efficiency at 10²⁰ eV)

• Primary direction resolution \Leftrightarrow space resolution in FoV, time resolution

(0.1° angular resolution, 2.5 μ s time resolution $\Rightarrow \pm 1^{\circ}$ on EECR incoming direction)

Integrated Aperture

EUSO – The Instrument

How to detect EECRs from space

<u>STEP 1</u>

Particle penetrating Earth's atmosphere creates an EAS. UV fluorescence light is produced along the particle trajectory and it is imaged by the EUSO telescope

STEP 2

Highly collimated Cherenkov photons are also produced in the forward direction of EAS. At the impact point with the earth surface, reflected/diffused UV light is imaged by the telescope

<u>STEP 3</u>

instantaneous IR picture of the FOV is taken at trigger occurrence.

<u>STEP 4</u>

Sounding of the atmosphere, along the EAS direction, is performed by a LIDAR system

The space-time image is given in terms of X-T and Y-T projections of the collected photoelectrons, X and Y being the coordinates inside the field-of-view; the time coordinate T measures the shower development in depth, providing info about the shower length in the third direction, the height in the atmosphere.

Downward neutrino acceptance for EUSO

 \checkmark 2 * 10¹⁸ g is the total target mass under the FOV

- ✓ reduction due to trigger efficiency calculated by full simulation. Clouds distribution is considered
- reduction due to selection efficiency needed for 10⁻⁴ proton rejection calculated from full simulation
- results show a sensitivity around 10 x AUGER for neutrino in the10²⁰eV energy region

Summary: EUSO

- EUSO is a pioneering experiment studying EAS from space:
 - An instantaneous aperture of 6×10⁵km²sr with a duty cycle ~20% is a technically achievable goal with up-to-date technology;
 - The acceptance reduction due to cloud effect has been evaluated to be ~1/3.
- EUSO, with its dynamical range (E>5×10¹⁹eV) is a "beyond-GZK experiment". At E>10²⁰eV:
 - ~10³ events/year can be expected according to AGASA findings;
 - ~10² events/year can be expected according to GZK-suppressed spectrum due to uniform source distribution.
- EUSO complement the AUGER findings in both cases:
 - Study the source spectra for superGZK model;
 - Analyse the GZK behaviour and the source distribution for GZK-suppressed mode;
- EUSO highly sensitive to neutrino astronomy at E>5×10¹⁹ eV

But ...

EUSO	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	
	A		B		C/D			-				

- EUSO on the ESA module Columbus is uncertain due to ISS/Shuttle delays
- Phase A completed, technically ready for phase B (15 July 2004)
- EAS unable to recommend its continuation into phase B in foreseeable future (AWG, FPAG, SSAC)

\Rightarrow Freezer status

• EUSO will be supported on "exciting" Auger results;

Alternative Solution?

• ? ...

- EUSO mounted on the Japanese Module
- Using a Japanese carrier to launch EUSO

3-4 Nov. 2005: EUSO re-foundation Meeting ESA ESTEC, Noordwijk, NL

Post Auger Scenario? Cosmic Vision

Cf. Günther Hasinger's talk: Status, Probleme und Perspektiven

Summary and Outlook: Pierre Auger Observatory

Status:

- Southern Observatory over half finished
- With 25% of a full Auger-year exposure, we have:
 - First estimate of an FD-calibrated spectrum
 - First studies of anisotropies in the sky
 - Limits on photon primaries

Future plans:

- Completion by mid 2006
- Full understanding of our instruments
- Usage of rapidly expanding data set (x7 in two years)
- Measure spectrum around 10²⁰eV with unprecedented precision
- Solve AGASA/HIRES dispute
- •Composition studies with SD, FD and HYBRID
- •Large/small scale anisotropies
- Search for neutrinos and exotics (horizontal showers)
- Begin working on Auger North
- R&D for radio, ...