Unsichtbare Energie in hochenergetischen Luftschauern

R. Engel, T. Pierog und M. Unger

Forschungszentrum Karlsruhe

Motivation: Kalorimetrische Energiebestimmung mit Fluoreszenzteleskopen

Analytische Rechnung:

• Superposition: $E_0 \rightarrow A \cdot E_0 / A$

• konstante kritische Energie $E_{\rm crit}$

 $k = \frac{\ln(E_{\rm crit}/E_0 \cdot A)}{\ln(f_{\pm}/n_{\pm})}$

 $\frac{E_{\rm inv}}{E_0} = f_{\nu} \cdot \left(\frac{1}{A} \frac{E_0}{E_{\rm crit}}\right)^{-\alpha}$

• konstante π -Multiplizität n_{\pm}

• ν -Energieanteil f_{ν} in π - μ -e

 \rightarrow Anzahl der WW bis π^{\pm} -Zerfall:

→ Anteil der unsichtbaren Energie:

wobei $\alpha = \frac{\ln(f_{\pm})}{\ln(f_{\pm}/n_{\pm})} > 0$

• π^{\pm} -Energieanteil f_{\pm}

- Fluoreszenzemission proportional zur Energieabgabe dE/dX in der Atmosphäre
- kalorimetrische Energie:

$$E_{\rm kal} = \int_0^\infty {\rm d}E/{\rm d}X(X)\,{\rm d}X$$

• Neutrinos/hochenergetische Myonen tragen nichts/kaum zu dE/dX bei

 \rightarrow "unsichtbare" Energie E_{inv}

 \rightarrow Primärenergie $E_{\text{tot}} = E_{\text{kal}} + E_{\text{inv}}$

- Transfer der Primärenergie in elektromagnetische Schauerkomponente
- π -Produktion bis Zerfallslänge > WWlänge $\leftrightarrow E_{\pi^{\pm}} < E_{\text{crit}}$

Luftschauersimulation mit CONEX

Hybridsimulation [1] mit den hadronischen WW-Modellen neXus3.97 [2], QGSJET01 [3] und Sibyll2.1 [4] (siehe [5] für Details).

→ Korrekturfaktoren für kalorimetrische Energiemessungen:

$$E_0^{\rm rec} = E_{\rm kal}^{\rm rec} \cdot \left(\frac{E_{\rm kal}}{E_0}\right)_{\rm th}^-$$

\rightarrow stat. und syst. Unsicherheiten:

- Schauerfluktuationen
- Modellunterschiede
- Art des Primärteilchens

Zusammenfassung

- qualitatives Verständnis der Energie- und Massenabhängigkeit der unsichtbaren Energie in hochenergetischen Schauern mit dem einfachen Heitler-Modell
- Korrekturfaktoren für die Energiebestimmung mit Fluoreszenzteleskopen
- größte Unsicherheit durch Möglichkeit primärer Photonen
- primäre Nukleonen: Gesamtunsicherheit \leq 3% für $E_0 > 10^{19}$ eV

\rightarrow Schlussfolgerungen:

- Energieverhalten: mehr WW bis zum Zerfall bei hohem E₀ → mehr Energietransfer nach π⁰ → γγ → Anteil von E_{inv} wird kleiner ∝ E₀^{-α}
- hadronische Primärteilchen: A Kaskaden mit $E = E_0/A$ \rightarrow tiefere Eindringtiefe für leichtere Kerne \rightarrow mehr E_{inv} für schwere Kerne

Photonen:

- kaum Myonproduktion $\rightarrow E_{inv} \approx 0$
- theoretische Unsicherheiten aus n_{\pm}

Literatur

- [1] M. Alekseeva et al., Proc. 29th ICRC Pune (2005) and T. Pierog et al., astro-ph/0411260.
- [2] H. J. Drescher et al., Phys. Rep. **350** (2001) 93 and hep-ph/0007198.
- [3] N. N. Kalmykov, S. Ostapchenko and A. I. Pavlov, Nucl. Phys. B (Proc. Suppl.) 52B (1997) 17 and Phys. At. Nucl. 56 (1993) (3) 346.
- [4] R. Engel, T. K. Gaisser, P. Lipari and T. Stanev, Proc. 26th ICRC Salt Lake City 1 (1999) 415; R. S. Fletcher, T. K. Gaisser, P. Lipari and T. Stanev, Phys. Rev. D50 (1994) 5710.
- [5] T. Pierog et al., Proc. 29th ICRC Pune (2005).