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An ATLAS Trigger Overview
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ATLAS Calorimetry for LVL2 (Region of Interest)
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T2Calo

I The input is (normally) a 0.4× 0.4 region in the η × φ plane,
which encompasses (in the order of) 1,000 cells;

I It is a clustering algorithm;

I Evaluates 4 discriminating quantities and other properties of
the candidate RoI;

I It is followed by a hypothesis algorithm that applies cuts on
the 4 quantities.

T2Calo
(clustering)

shower shape on second E.M. layer
spreading on first E.M. layer

energy at hadronic section
energy at E.M. section

other cluster quantities (sums)

electron
or jetHypothesis

Cuts

RoI from DAq
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Trigger Facts

I The ATLAS Trigger is predominantly inclusive (searches for
high-pT representative objects and accepts events based on
those);

I Important objects to be identified in this system are high-pT
electrons;

I In average, for every 25,000 high-pT electrons accepted by
LVL1, it is expected that only 1 is a true electron;

I Today’s algorithms for electron identification @ LVL2
(T2Calo) use basic clustering strategies and apply cuts to
identify electrons and reject jets;

I This algorithm depends on the input object energy.
I If approved by the cuts applied after T2Calo, Inner Detector

(tracker) algorithms are applied to the object. These
algorithms take longer processing times;

I The average processing time per event (not per RoI) should
be in the order of 10 ms.
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Things we have tried to address...

I Try to devise a discriminator that is more resilient to noise
and independent of the input object energy;

I Have a system that can be re-calibrated without a specialist
help;

I Try to improve jet detection efficiencies so the system looses
less time on uninteresting objects;

I Try to keep ourselves within the time budget defined by LVL2;

I Find a handle to control algorithm timing (by minimizing
efficiency losses).
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Places where Neural Networks could be used
Neural Networks make sense at hypothesis making,

where the user has to “guess” the particle type from a
summary of the RoI data.

1. At the output of T2Calo (T2Calo-Neural) Substituting
the current hypothesis algorithm

T2Calo
(clustering)

shower shape on second E.M. layer
spreading on first E.M. layer

energy at hadronic section
energy at E.M. section

other cluster quantities (sums)

electron
or jetRoI from DAq

Neural Net
4−input

Maximize discrimination

2. Replacing T2Calo (Ringer-Neural) With a feature
extraction algorithm that better preserves the shower shapes
and could achieve better discrimination

other cluster quantities (sums)

RoI from DAq
Ringer

electron
or jet

Neural Net

100 ringer shaped features

Maximize discrimination

100−input
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The Ringer
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The ring sum strategy is adapted to every layer granularity and
leads to 100 values, using full RoI data;
Energy-based normalization can use the energy per layer, section
(E.M. and Hadronic) or of the whole object to normalize the input
previously to hypothesis making.
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Comparative discrimination efficiencies

Data sets: H→4e, H→2e2mu, single electrons and dijets,
prefiltered by a realistic (Athena) LVL1 trigger simulation.
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η Scan Analysis
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Timings

The machine is a Pentium-4 @ 2.8 MHz with 512 Mb RAM, the
system is fully implemented in C++ and optimized for speed. The
inputs represent a realistic sample of RoI’s which would be
approved by ATLAS LVL1 Trigger.
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Relevance and “controlled” input compaction
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The DSP Alternative

I Digital signal processors (DSPs) may be used in order to
optimize the overall system performance.

I The inner structure of a DSP exploits inherent features of
digital signal processing algorithms, like MAC, loops and
modular operations.

I With a multi-bus architecture, together with a set of internal
devices working in parallel, a DSP can achieve higher
execution rates with lower clock frequencies.

I Benefits:

I Fast execution speed.
I Low power consumption.
I Reduced size.
I Reduced costs.
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DSP Inner Structure
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Results Using DSP

I The DSP used was a floating point, 32-bit ADSP-21160N @ 100
MHz with SIMD capabilities and 4 Mbits of internal memory.

I An average time of 4.692± 1.108 ms per RoI was achieved.
I The performance suffered from the fact that the ring generation is a

hard to optimize process.

I The average time of 10.429± 0.465 µs for the discrimination part,

however, proved the DSP efficiency for numerical operations.
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Conclusions

I Neural networks improve considerably hypothesis making for LVL2
e/jet discrimination, either using T2Calo’s original output or with
new feature extraction methods, by a factor of 2, approx.;

I Ring analysis outperforms T2Calo, sometimes cutting the
background rate by a factor of 3 or 4 of T2Calo’s capacity for the
same electron detection efficiency;

I Ring feature extraction married to relevance analysis provides a
flexible and controllable way to exchange robustness and efficiency
in a optimal manner, providing a knob to control execution speed
and background rejection;

I The C++ algorithm implementation proves this is a feasible ATLAS
LVL2 option (with an average of ∼420 µs execution time for 100
rings and ∼320 µs for 53 rings), with timings better than today’s
T2Calo implementation (latest known timings point to 4 ms) for the
same computer architecture) in ATLAS’s Athena;

I DSP may be an alternative due to its efficiency in digital signal
processing algorithms.
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The Second Level Trigger (Back-up)
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η Scan comparison T2Calo (PCA + 14-14-1) versus Rings
(Back-up)
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