The apeNEXT Project

INFN Ferrara, Rome

DESY Zeuthen

Université de Paris-Sud, Orsay

Outline:

- □ Introduction
- □ Architecture
- □ Hardware
- □ Software
- Status

H. Simma, ACAT2005

Lattice QCD

Feynman path integral

$$\langle O \rangle \sim \int D[U] D[\psi] O(U, \psi) \cdot exp\{-S_g(U) - S_q(U, \psi)\}$$

Discretisation on a finite space-time lattice $U(x,\mu)$: 9 complex/link

 $\psi(x)$: 12 complex/site

e.g. lattice size
$$L^3 \times T = 32^3 \times 64$$
 \blacktriangleright $2 \cdot 10^6$ sites

Monte-Carlo method

$$\langle O \rangle \rightarrow \frac{1}{\#U} \sum_{\{U\}} O(U)$$

with gauge configurations $\{U\}$ generated according to distribution

$$P(U) \sim e^{-S_g(U)} \cdot \int D[\psi] e^{-\bar{\psi}M(U)\psi}$$

 $\frac{\text{Wilson-Dirac operator}}{[\mathbf{M}\psi]_{x}} = (D_{\mu}\gamma_{\mu} + m + a \cdots)\psi$ $\sim \psi_{x} - \kappa \sum_{\mu=\pm 1}^{\pm 4} \mathbf{U}_{\mu,\mathbf{x}} \cdot (1 - \gamma_{\mu})\psi_{x+\mu}$

→ 1320 floating-point operations per lattice site

H. Simma, ACAT2005

apeNEXT Project

Other machine projects:

□ QCDOC (Columbia + IBM)

□ BlueGene/L (IBM)

□ PC Clusters (PMS, Wuppertal, APEnet, etc.)

apeNEXT Design Aims:

- Scalable up to tens of Tflops
- rightarrow Architecture mainly optimized for LQCD (i.e. $\approx 50\%$ sustained)
- All processor and network functionality on a single chip
- Support for C programming language

Hardware Overview

Global apeNEXT Architecture

Massively-Parallel System Architecture

APE100, APEmille, apeNEXT, ..., QCDOC, BlueGene/L

- N-dim torus communication network
- Autonomous nodes with local on- and off-chip memory
- Integrated memory interface (with ECC)
- Integrated communication links (with sync and re-send)
- IO via separate nodes or hosts
- Single user process (minimal OS, no virtual addresses)
- Serial control network
- Global interrupt tree
- Global clock tree
- Low power consumption and high packing density

Optimized Node Architecture

Processing Unit

- arithmetic operations and control instructions
- throughput \leftrightarrow N_{flop}
- data formats

□ Memory System

- size
- bandwidth $\leftrightarrow N_{word}/N_{flop}$
- latency
- access model and hierarchy
- Communication Network
 - bandwidth $\leftrightarrow N_{com}(V_{loc})/N_{word}$
 - latency
 - connectivity

Processor Overview

Arithmetic Units

□ floating point unit (FPU) performs one operation $a \times b + c$ per clock cycle, where a, b, c are complex numbers or pairs of float

★ 8 Flops / cycle = 1.6 GFlops/sec

□ 64-bit IEEE floating point format

arithmetic unit provides also integer, logical and LUT operations on pairs of 64-bit operands

□ address generation unit also usable for 64-bit integer operations

Memory Hierarchy

- □ 512 64-bit registers
- → 256 complex operands

memory controller

□ supports 256 MBytes upto 1 GBytes DDR-SDRAM (with ECC)

□ maximum bandwidth: 1 complex word per clock cycle

→ 2×64 bit/cycle = 3.2 GBytes/sec

□ minimal latency: 16 cycles

□ controls loading of data <u>and</u> program instructions

Memory Hierarchy (cont.)

instruction buffer

allows storing 4k compressed, very long instructions words (VLIW)
 can be used as FIFO or dynamic/static cache

Prefetch Queues and Network Interface

Network

- \Box 7 bi-directional LVDS links: $\pm x$, $\pm y$, $\pm z$, 7th
- □ gross bandwidth per link is one byte per clock cycle

✤ 8 bit/cycle = 200 MBytes/sec

- ❑ transmission by frames of 128 bit data + 16 bit CRC
 → effective bandwidth ≤ 180 MBytes/sec
- \square very low startup latency: \approx 25 cycles (125 ns)
- concurrent send and receive operations
- $\hfill\square$ concurrent transfer along orthogonal directions
- □ support for non-homogeneous communications
- □ configurable direction mapping

Network (cont.)

HW supports synchronising 1-, 2-, and 3-step communications

 \clubsuit direct access to all nodes on a $3\times3\times3$ cube

H. Simma, ACAT2005

ASIC chip

- \Box 0.18 μ CMOS
- $\hfill 16 \times 16 \ mm^2$
- □ 520 K gates
- □ 600 pins
- □ 200 MHz **??**

Processor Design

Hardware Details

J&T Module (daughter board)

- □ processor chip
- □ 9 memory chips
- □ clock circuits
- $\hfill\square$ power converters

Hardware Details (cont.)

Processing Board

- □ 16 daugther boards
- \Box FPGA (global signals and I^2C)
- □ DC-DC converters (48 → 2.5 V)
- □ 1728 differential LVDS signals
- robust mechanical design (insertion force: 80-150 kg)

Hardware Details (cont.)

Backplane

slots for 16 processing boards
4600 differential LVDS signals
16 PCB layers

Root Board

- global interrupt signals
 (500 ns round-trip for synch. barrier)
- $\hfill\square$ clock distribution
- □ slow control

H. Simma, ACAT2005

Hardware Details (cont.)

Rack

- $\hfill\square$ slots for 2 backplanes
- \Box footprint O(1 m²)
- \square power consumption \leq 8 kW
- $\hfill\square$ air cooled
- □ hot-swap power supply

H. Simma, ACAT2005

Host Interface Board

□ Interface for 7th LVDS link (200 MByte/s)

 $\hfill\square$ 4 interfaces for I²C links

D PCI 64-bit / 66 MHz

Operating System

Operating System (cont.)

- $\hfill\square$ Bootstrap, exception handling and debugging via I^2C
- \Box Fast program loading and data IO via 7th link (BW \sim #host PCs)
- □ Network toplologies (periodic communications):
 - z = 1, 2, 8
 - y = 1, 2, 8
 - x = 1, 2, 4, $4N_{crate}$
- □ Machine partitions (independent global control):
 - node $1 \times 1 \times 1$
 - cube $2 \times 2 \times 2$
 - board $4 \times 2 \times 2$
 - unit $4 \times 2 \times 8$
 - crate $4 \times 8 \times 8$
 - rack $8 \times 8 \times 8$
 - . . .

Programming Languages

TAO

□ FORTRAN-like programming language

Dynamical grammar allows OO-style programming

□ Needed for smooth transition from APEmille to apeNEXT

С

 $\hfill\square$ Based on freely available Icc + custom implementation of libc

□ Most of ISO C99 standard supported

□ Few APE-specific language extensions

SASM

□ High level assembly (e.g. for OS routines and C libraries)

□ Aim: assembler programming by user not required

Compiler Overview

H. Simma, ACAT2005

C-Compiler: Syntax Extensions

- □ New data types: complex, vector
- □ New operators: ~ (complex conjugation)
- □ New condition types: where(), any(), all(), none()
- □ register struct → burst memory access
- \Box #pragma cache \rightarrow enforce use of instruction buffer
- □ Inline functions and inline assembly

C-Compiler: Syntax Extensions (cont.)

□ Magic offsets for remote communication:

```
complex a[1], b;
b = a[0+X_PLUS]; // read data from node in X+ direction
 Macros for data prefetching:
    complex a;
    register complex ra;
```

prefetch(a); // memory → queue
fetch(ra); // queue → register file

MPI on apeNEXT?

Restrictions:

- □ Only MPI_COMM_WORLD
- □ Only standard (buffered) mode
- □ Send always non-blocking
- □ Receive always blocking
- □ No request handles
- Only homogeneous communications beyond nearest neighbors

Extensions:

□ MPI_APE_Send, MPI_APE_Recv

Assembly Optimizer: sofan

- Optimization operating on low-level assembly
- □ Based on optimization toolkit SALTO (IRISA, Rennes)
- □ Optimization steps:
 - **O** merging APE-normal operations
 - ${\mathbf O}$ removing dead code
 - O eliminating register moves
 - O optimizing address generation: →
 - ${\bf O}$ code selection
 - ${\bf O}$ instruction pre-scheduling
 - O ...

Benchmarks: Linear Algebra

operation	N_{flop}	$\mid N_{word}$	sustained performance				
			"max"	asm	С	C+Sofan	TAO+Sofan
zdotc	8	2	50%	41%	28%	40%	37%
vnorm	4	1	50%	37%	31%	34%	26%
zaxpy	8	3	33%	29%	27%	28%	28%

"max" sustained performance \leftarrow ignoring latency of floating point pipeline and loop overhead

Optimization "tricks":

- ➔ loop unrolling
- ➔ burst memory access
- \blacktriangleright instructions kept in cache

Performance limitations:

- ➔ start-up latency
- ➔ loop overhead

Assembly not required

Benchmarks: Wilson-Dirac Operator

 $\Psi_x = D_{xy}[U] \, \Phi_y$

Consider worst case: local lattice size 16×2^3

Measured sustained performance: 55% Communication-wait cycles: 4% + scalability

Optimization "tricks":

- ✤ keep gluon fields local
- ➔ pre-fetching 2 sites ahead
- ➔ orthogonal communication directions
- ➔ some unrolling

Status

□ HW components:

processor	prototype tested
PB, backplane, rack	prototypes tested and frozen
host interface board	prototype tested and frozen

□ SW elements:

TAO compiler	stable prototype
C compiler	prototype
assembly optimizer	developing
microcode generator	stable
linker	planned
operating system	developing

1st prototype rack with 512 nodes being tested
 2nd prototype rack being assembled
 Successful test runs with physics codes

Physics Tests

Continuum extrapolation of the step scaling function for the running coupling constant α_s with the Schrödinger functional for SU(3) pure gauge theory

Outlook

□ On-going work:

- HW tuning to push speed and stability
- SW development to increase efficiency and usability
- Commissioning of "huge prototype" (1.6 Tflops)
- Qualification of revised chip production expected in July

 \Box Large installations in 2005/2006:

- 5+5 Tflops @ INFN
- 3 Tflops @ DESY
- 5 Tflops @ Bielefeld
- Orsay?

□ Exploit full potential of apeNEXT architecture

Architecture Comparison

	apeNEXT	QCDOC	BlueGene/L
Nodes	$16\ldots \geq 2$ K	64 16 K	32 64 K
Topology	3d + 7th link	6d	3d + tree
Chip	CPU + FPU	CPU + FPU	2 CPU + 4 FPU
CPU core	custom VLIW	PowerPC 440	PowerPC 440
Clock	\leq 200 MHz	≤ 500 MHz	700 MHz
Peak/node	1.6 Gflops	1.0 Gflops	5.6 Gflops
Flop/clk	8 (C), 4 (V)	2	8
Mem. bandwidth	3.2 GB/s	2.6 GB/s	5.6 GB/s
Network	180 MB/s $ imes$ 12	$62.5 \text{ MB/s} \times 24 (16)$	175 MB/s $ imes$ 6
	150 ns	600 ns	1000 ns
	concurrent	concurrent	blocking
	1-,2-,3-step	1-step + store/forw.	cut-through
Efficiency	\approx 50%	\approx 50%	$\approx 20\%$
Power/sust.	16 W/Gflops	16 W/Gflops	20 W/Gflops
Price/sust.	1 €/Mflops	1 \$/Mflops	1 \$/Mflops ???