NNPDF Collaboration

ACAT 2005

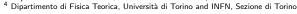
26th May 2005

The NNPDF Collaboration

Luigi Del Debbio¹, Stefano Forte², José I. Latorre³, Andrea Piccione⁴ and Joan Rojo³

¹ Theory Division, CERN

³ Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona



² Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano

The name of the game Ways out

Structure Functions

The NNPDF approach Results

Parton Distributions

The NNPDF approach Results

Conclusions

QCD and Hadrons

- ▶ QCD describes interactions between quarks and gluons. Experimentally we observe only hadrons → Confinement
- ▶ Perturbative QCD is not trustable at low energies (~ GeV). We can not solve QCD in the non-perturbative region, but on a lattice . . .
- We can extract information on the proton structure from a process with only one initial proton (DIS at HERA).
 Then we can use these as an input for a process where two initial protons are involved (DY at LHC) → Factorization

NNPDF Collaboration ACAT 2005

QCD and Hadrons

- ▶ QCD describes interactions between quarks and gluons. Experimentally we observe only hadrons → Confinement
- ▶ Perturbative QCD is not trustable at low energies (~ GeV). We can not solve QCD in the non-perturbative region, but on a lattice . . .
- We can extract information on the proton structure from a process with only one initial proton (DIS at HERA).
 Then we can use these as an input for a process where two initial protons are involved (DY at LHC) → Factorization

NNPDF Collaboration ACAT 2005

▶ The cross section

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[[1 + (1-y)^2] F_1 + \frac{1-y}{x} (F_2 - 2xF_1) \right]$$

► The structure function (QCD + parton model)

$$F_2(x, Q^2) = x \left[\sum_{q=1}^{n_f} e_q^2 \mathcal{C}^q \otimes q_q(x, Q^2) + 2n_f \mathcal{C}^g \otimes g(x, Q^2) \right]$$

Deep Inelastic Scattering

The cross section

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[[1 + (1-y)^2] F_1 + \frac{1-y}{x} (F_2 - 2xF_1) \right]$$

The structure function (QCD + parton model)

$$F_2(x, Q^2) = x \left[\sum_{q=1}^{n_f} e_q^2 C^q \otimes q_q(x, Q^2) + 2n_f C^g \otimes g(x, Q^2) \right]$$

The problem: I

- ► Structure function (or Xsec) is a convolution over *x* of PDFs and perturbative cross section → Deconvolution
- ▶ Each structure function (or Xsec) is a linear combination of many PDFs $(2n_f \text{ quarks} + \text{gluon}) \rightarrow \text{Different processes}$
- ▶ Data are given at various scales, and we want PDFs as functions of x at a common scale $Q^2 \rightarrow \text{Evolution}$
- ► TH uncertainties: resummation, nuclear corrections, higher twist, heavy quark thresholds, . . .

Which is the uncertainty associated with a PDFs set? [Djouadi and Ferrag 2003, Frixione and Mangano 2004, Tung 2004, HERA and the LHC Workshop 2004-2005]

The problem: I

- ► Structure function (or Xsec) is a convolution over *x* of PDFs and perturbative cross section → Deconvolution
- ▶ Each structure function (or Xsec) is a linear combination of many PDFs $(2n_f \text{ quarks} + \text{gluon}) \rightarrow \text{Different processes}$
- ▶ Data are given at various scales, and we want PDFs as functions of x at a common scale $Q^2 \rightarrow \text{Evolution}$
- ► TH uncertainties: resummation, nuclear corrections, higher twist, heavy quark thresholds, . . .

Which is the uncertainty associated with a PDFs set? [Djouadi and Ferrag 2003, Frixione and Mangano 2004, Tung 2004, HERA and the LHC Workshop 2004-2005]

The problem: I

- Structure function (or Xsec) is a convolution over x of PDFs and perturbative cross section → Deconvolution
- ▶ Each structure function (or Xsec) is a linear combination of many PDFs $(2n_f \text{ quarks} + \text{gluon}) \rightarrow \text{Different processes}$
- ▶ Data are given at various scales, and we want PDFs as functions of x at a common scale $Q^2 \rightarrow \text{Evolution}$
- ➤ TH uncertainties: resummation, nuclear corrections, higher twist, heavy quark thresholds, . . .

Which is the uncertainty associated with a PDFs set? [Djouadi and Ferrag 2003, Frixione and Mangano 2004, Tung 2004, HERA and the LHC Workshop 2004-2005]

The Problem: II

- ightharpoonup For a single quantity ightarrow 1 sigma error
- lacktriangle For a pair of numbers ightarrow 1 sigma ellipse
- For a function → We need the probability measure P [f] in the space of functions f(x)

Expectation values → Functional integrals

$$\langle \mathcal{F}[f(x)] \rangle = \int \mathcal{D}f \mathcal{F}[f(x)] \mathcal{P}[f(x)]$$

Determine an infinite-dimensional object (a function) from finite set of data points \rightarrow Mathematically ill-posed problem

The standard approach

- 1. Choose a simple functional form with enough free parameters
- 2. Fit parameters by minimizing χ^2

Some difficulties arise:

- Errors and correlations of parameters require at least fully correlated analysis of data errors
- ► Error propagation to observables is difficult: many observables are nonlinear/nonlocal functional of parameters
- ► Theoretical bias due to choice of parametrization is difficult to assess (effects can be large if data are not precise or hardly compatible)

The NNPDF approach

- ▶ Determination of the Structure Functions: this is the easiest case, since no evolution is required, but only data fitting. A good application to test the technique → Done
- Determination of the Parton Distributions: the real stuff → Working on it ...

The name of the game Ways out

Structure Functions

The NNPDF approach Results

Parton Distributions
The NNPDF approach
Results

Conclusions

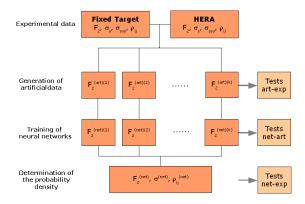
General strategy: I

- Monte Carlo sampling of data (generation of replicas of experimental data) → Faithful representation of uncertainties
- ▶ NN training over MC replicas → Unbiased parametrization

Expectation values → Sum over the Nets

$$\left\langle \mathcal{F}\left[F(x,Q^2)\right]\right\rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\left(F^{(net)(k)}(x,Q^2)\right)$$

General strategy: II



Training: I

- ► Architecture: 4-5-3-1
- ▶ Back Propagation ($\sim 10^8$ training cycles):

$$\chi_{\mathrm{diag}}^{2(k)} = \frac{1}{N_{\mathrm{dat}}} \sum_{i=1}^{N_{\mathrm{dat}}} \frac{\left(F_i^{(\mathrm{art})(k)} - F_i^{(\mathrm{net})(k)}\right)^2}{\sigma_{i,t}^{(\mathrm{exp})^2}}$$

▶ Genetic Algorithm ($\sim 10^4$ generations):

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \operatorname{cov}_{ij}^{-1} \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

Training: I

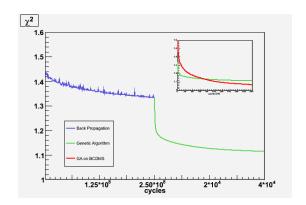
- ► Architecture: 4-5-3-1
- ▶ Back Propagation ($\sim 10^8$ training cycles):

$$\chi_{\mathrm{diag}}^{2(k)} = \frac{1}{N_{\mathrm{dat}}} \sum_{i=1}^{N_{\mathrm{dat}}} \frac{\left(F_i^{(\mathrm{art})(k)} - F_i^{(\mathrm{net})(k)}\right)^2}{\sigma_{i,t}^{(\mathrm{exp})^2}}$$

• Genetic Algorithm ($\sim 10^4$ generations):

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,i=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \operatorname{cov}_{ij}^{-1} \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

Training: II



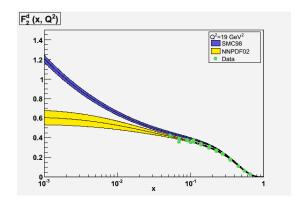
Credits

- S. Forte, L. Garrido, J. I. Latorre and A. P., "Neural network parametrization of deep-inelastic structure functions," JHEP05 (2002) 062 [arXiv:hep-ph/0204232]
- ▶ L. Del Debbio, S. Forte, J. I. Latorre, A. P. and J. Rojo [NNPDF Collaboration], "Unbiased determination of the proton structure function F₂^p with faithful uncertainty estimation", JHEP03 (2005) 080 [arXiv:hep-ph/0501067]

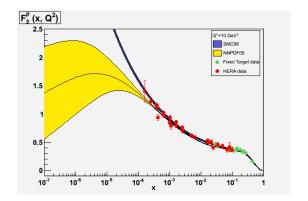
Source code, driver program and graphical web interface for F_2 plots and numerical computations available

http://sophia.ecm.ub.es/f2neural

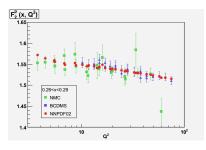
Fit of $F_2^d(x, Q^2)$ [NNPDF 2002]

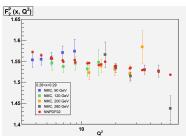


Fit of $F_2^p(x, Q^2)$ [NNPDF 2005]



Incompatible data [NNPDF 2002]





The name of the game Ways out

Structure Functions
The NNPDF approach
Results

Parton Distributions

The NNPDF approach Results

Conclusions

Strategy

Same strategy as with SF + Altarelli-Parisi evolution

- Monte Carlo sampling of data
- ► Evolution of parton distributions to experimental data scale

Strategy

Same strategy as with SF + Altarelli-Parisi evolution

- Monte Carlo sampling of data
- ▶ Parametrize parton distributions with neural networks
- Evolution of parton distributions to experimental data scale and training over Monte Carlo replica sample

Examples

Expectation values:

$$\langle \mathcal{F}[q(x)] \rangle = \frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \mathcal{F}\left(q^{(net)(k)}(x)\right)$$

Correlations between pairs of different parton distributions at different points:

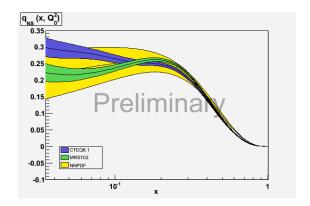
$$\langle u(x_1)d(x_2)\rangle = \frac{1}{N_{rep}}\sum_{k=1}^{N_{rep}}u^{(net)(k)}(x_1,Q_0^2)d^{(net)(k)}(x_2,Q_0^2)$$

Details

Motivation

- $q_{NS}(x, Q^2) \equiv \frac{1}{6} (u + \bar{u} d \bar{d}) (x, Q^2)$
- Experimental data: NMC (94 pts) and BCDMS (253 pts)
- ▶ Kinematical cuts: $Q^2 \ge 9 \text{ GeV}^2$, $W^2 \ge 6.25 \text{ GeV}^2$
- ▶ Neural network architecture: 2-2-2-1 (15 params.)
- ▶ Strong coupling: $\alpha_s(M_Z^2) = 0.1182$
- Perturbative order: NNLO
- ▶ VFN: $m_c = 1.5 \, GeV$, $m_b = 4.5 \, GeV$, $m_t = 175 \, GeV$
- ▶ TMC: F_2 integral evaluated with NN F_2
- # replica: 25 (should be 1000)

Non-Singlet



Summary

- Unbiased determination of structure functions with faithful estimation of uncertainties
- Successful implementation of neural parton fitting at NNLO

Conclusions

NNPDF Collaboration ACAT 2005

Outlook

- Construct full set of NNPDF parton distributions from all available data
- Estimate impact of theoretical uncertainties
- Assess impact of uncertainties of PDFs for relevant observables at LHC
- Perform a benchmark set of pdfs, to compare the different fitting programs (CTEQ,MRST, Alekhin)
- Make formalism compatible with standard interfaces (LHAPDF, PDFLIB) → NNPDF partons available for use in Monte Carlo generators

