
Miroslav Morháč 

- Institute of Physics, Slovak Academy of Sciences, 
Bratislava, Slovakia 

- Flerov Laboratory of Nuclear Reactions, JINR Dubna, 
Russia 

 
 
 
 
 
 
 
 
 
 

 
 
 

Deconvolution methods and their applications in 
the analysis of gamma-ray spectra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1

ACAT2005,  May 22-27, Zeuthen Germany 



Introduction and motivation 
 

• one of the most delicate problems of any spectrometric method is that related to 
the extraction of the correct information out of the experimental spectra 

• due to the limited resolution of the equipment, signals coming from various 
sources are overlapping 

• deconvolution and decomposition are the names given to the endeavor to improve 
the resolution of an experimental measurement by mathematically removing the 
smearing effects of an imperfect instrument, using its known resolution function 

• the deconvolution methods are widely applied in various fields of data processing. 
Recently many applications have been found in various domains of experimental 
science, e.g. image and signal restoration, the determination of thickness of 
multilayer structures, tomography, magnetic resonance imaging, crystallography, 
geophysics, etc. 

• deconvolution methods can be successfully applied also for the decomposition of 
multiplets and subsequently for the determination of positions and intensities of 
peaks in γ -ray spectra 

 
Theoretical background 
 

Linear time (energy) invariant systems 

 
• stationary system that satisfies the superposition principle can be described by 

convolution integral 
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 where ( )x t  is the input into the system, ( )h t  is its impulse function (response), 

 is the output from the system, ( )'y t ( )n t  is additive noise and the mark ∗  
denotes  the operation of the convolution. 

 
 
 
• analogously for discrete systems one can write 
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 where N is the number of samples 
 
• for two- and three-dimensional discrete convolution systems it holds 
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• in case we know the response function ( )h t  and measured output signal and we 

want to determine the input signal we say about deconvolution.  

Linear time (energy) dependent systems 

• for time dependent continuous linear system one can write 
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• Fredholm integral equation of the first kind is extremely ill-conditioned (posed) 

problem. Small changes in ( )y t  cause enormous oscillations in the sought ( )x t  
• many different functions solve a convolution equation within error bounds of 

experimental data 
• analogously for discrete system it holds 
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• it represents general system of linear equations. In this case the columns of the 
system matrix are not simply shifted as it was in the above mentioned convolution 
systems. We say about decomposition or unfolding 

• in general, this system can be in matrix form written 
 
                                                            H= +y' x n
• the matrix  has dimension  x , the vectors ,  have length N  and vector 

 has length M, while N (overdetermined system). 
H N M y' n

x M≥
 
• to find least square solution of above given system of linear equations the 

functional 
 
 2H −x y  
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 should be minimized 



• unconstrained least squares estimate of vector is x
 
 , 1ˆ ( )TH H −= Tx H y
 where  is Toeplitz matrix                                                          
   

TH H

• when employing this algorithm to solve a convolution system small errors or noise 
can cause enormous oscillations in the result. 

 
• the problem of finding  where H ,  are known, is a discrete ill-posed problem  

and requires regularization techniques to get adequate solution. 
x y'

 
• several methods to regularize the solution of above given system were developed. 

Most methods used in inverse problems adopt both an extreme criterion to unfold 
data (for instance, those of least squares or the maximum entropy) and a 
regularization method to reduce the very large fluctuations of the unfolded 
spectrum. 

 
• commonly used criteria for regularization are 

- smoothing 
- constraints imposition (for example only non-negative data are accepted) 
- choice of a prior information probability function - Bayesian statistical approach 

 
Illustration of the sensitivity of the non-regularized solution of 
system of linear equations to noise 
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Figure 1 Example of synthetic spectrum (without noise) composed of 9 Gaussians 



 

 
Figure 2 Original (thin line) and deconvolved  spectrum (bars) using unconstrained 

solution of Toeplitz system of linear equations 
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Figure 3 Original spectrum from Figure 1 + 1% of noise of the smallest peak # 9 

(thick line) and deconvolved spectrum (strong oscillations) using unconstrained of 
Toeplitz system of system of linear equations 
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Figure 4 Original spectrum from Figure 1 + channel 80 increased by one (thick 
line) and deconvolved spectrum (thin line) using unconstrained solution of Toeplitz 

system of system of linear equations 



 
Methods based on direct solution of system of linear equations. 

Tikhonov-Miller regularization 
 
• to find a regularized approximate solution of above given system of linear 

equations the functional 
                                                               2H α− +x y x 2Q

is minimized, α  being the regularization parameter. This solution can be obtained 
by solving the equation 

 ( ) 1T TH H Q Q Hα
−

= +x T y ,                                                     

• for  - unit matrix we get so called zero-th order or Tikhonov regularization. 

Together with 

Q E=

χ 2  also the sum of squares of elements of the estimated vector   
is minimized. 

x

• an immediate generalization of zero-th order regularization is called linear 
regularization. The functional α x 2Q  is replaced by more sophisticated 
measures of smoothness that derive from the first or higher derivatives. Suppose 
that ones a priori belief is that ix  is not too different from a constant, i.e., together 
with  χ 2  one minimizes the sum of squares of differences of neighbouring points. 
Then the matrix Q  is 
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• anologously for quadratic or cubic approximation to ix  the matrices Q are 
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Q  

respectively. The extension to higher order differences is straightforward.  
• there exist also some recommendations how to choose α  (0 )α< < ∞ , e.g.  
 

( ) / (T TTrace H H Trace Q Qα = ).  
 
Riley algorithm 
 
• this algorithm is commonly called iterated Tikhonov regularization. To obtain 

smoother solution one may use the above given formula  with iterative refinement 
 

( ) ( )α
−+ = + + −
1( 1) ( ) ( )n n T TH H Q Q Ax x y x n

)n

                                 

where  and . =(0) 0x = 0,1,2,...n
 
Methods based on iterative solution of system of linear equations. 
 
Van Cittert algorithm 

 
• the basic form of Van Cittert algorithm for a general discrete system is  

  ,                                              (( 1) ( ) ( )n n Aµ+ = + −x x y x
where  is system Toeplitz matrix,  represents the number iterations and A n µ  is 
the relaxation factor. The convergence condition of is that the diagonal elements of 
the matrix  satisfy A
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• this deconvolution algorithm can be modified in a such way that it will satisfy the 

conditions of convergence. Hence 
  ,                                ( )( 1) ( ) ( )n nE A Dµ µ µ+ = + − = +x y x y

where E is a unit matrix and 
 D E Aµ= − . 

Let , then we get (0) =x y
 ( )( ) ...n E D Dµ= + + +x n y

1
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• supposing that 0 1, ,..., Mλ λ λ −  are eigenvalues of , then A ( ) (0 11 ,..., 1 Mµλ µλ −− − )  
are eigenvalues of . If D



                                                                     ( )lim 1 0, 0,1,..., 1n
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• from this it implies that the necessary and sufficient conditions of convergence are 
 1 1, 0,1,...,i i Mµλ− < = −     1                                                   

if we define iλ  and its conjugate iλ
∗  as 

  ,i i i i ia jb a jbλ λ∗= + = − i

we get 
 .                                  ( )2 2 2 0, 0,1,,,,. 1i i ia b a i Mµ µ⎡ ⎤+ − < = −⎣ ⎦   
 

• this inequality gives two bounds for µ  

 2 2
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i i

a i M
a b

µ µ= = =
+
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  M  conditions that determine the bounds of µ  coefficient. 
• if the matrix  is positive definite the convergent solution always exists. A
• matrix  is symmetric, so its eigenvalues are real. The eigenvalues of matrix 

 are squares of the eigenvalues of matrix 

TH H
( ) (T TH H H H ) ( )TH H  and therefore 
positive. The iterative  algorithm of deconvolution becomes 

 ( ) ( )( 1) ( ) ( )n n T T T TH HH H HH Hµ+ ⎡ ⎤= + −⎣ ⎦x x y x n
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or 
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• eigenvalues iλ  are real, positive numbers, so then for µ  one can write 

 max0 2µ λ< <  ,                                                                         
where maxλ  is the greatest eigenvalue of . 'H
 

• for eigenvalues of  ( ) ( )T T T TH HH H HH H=y x  we can write 
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• as we do not know the greatest element in x  we estimate it from the condition 



 
1

'

0
, 0,1,..., 1

M

i jm
m

H i Mλ
−

=

≤ =∑    −  .                                               

• from these conditions we can estimate µ . 
 
Reference: 
Van Cittert P.H., Zum Einfluss der Spaltbreite auf die Intensitätverteilung in 
Spektralinien II, Z. Physik (1933) 298. 
 
Janson algorithm 
 
• local variable relaxation factor iµ  is introduced into Van Cittert algorithm 
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and  is usually about 0.2, a  is usually 0 and  must be greater than the ultimate 
height of the highest peak in the data 

r b

 
Reference: 
Coote G.E., Iterative smoothing and deconvolution of one- and two-dimensional 
elemental distribution data, NIM B 130 (1997) 118. 
 

 
 Gold algorithm 
 
• if we choose a local variable relaxation factor 

 ( )

( )

( )

1
' ( )

0

n

i M
n

im
m

x i

H x m
µ −

=

=

∑
                                                                       

and we substitude it into Van Cittert algorithm we get  
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• this is the Gold deconvolution algorithm. Its solution is always positive when both 

the elements of input data and response matrix are positive 
• the algorithm is suitable for use with histograms, e.g. in γ -ray spectroscopy. 
 
Reference: 
Gold R., ANL-6984, Argonne National Laboratories, Argonne III, 1964. 
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Richardson-Lucy algorithm 



 
• in formal way one can express the output of the continuous linear system in the 

form of probabilities 
 ( ) ( ) ( )y t h t x dτ τ τ= ∫  .                                                           

• from this one can write 
 ( ) ( ) ( )x q t y t dtτ τ= ∫  ,                                                                  

where (q t )τ  is related to ( )h t τ  via Bayes theorem 
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q t x

y t
τ

τ τ=  .                                                                        

• to solve this problem ( )q tτ  is calculated using an iteration approach 
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with  being the measured data ( )(0)y t ( )y t  and  

 ( ) ( ) ( )( 1) ( 1)n ny t h t x dτ τ τ− −= ∫  . 

• finally in discrete form we have 
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0, 1i M∈ − . For positive input data and response matrix this iterative method 
forces the deconvoluted spectra to be non-negative.  

• the Richardson-Lucy iteration converges to the maximum likelihood solution for 
Poisson statistics in the data. 

 
References: 
 
Abreu M.C. et al., A four-dimensional deconvolution method to correct NA38 
experimental data, NIM A 405 (1998) 139. 
Lucy L.B., A.J. 79 (1974) 745. 
Richardson W.H., J. Opt. Soc. Am. 62 (1972) 55. 
 
 
Muller  algorithm 
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• setting the probability to have Gauss statistics another deconvolution algorithm 
based on Bayes formula was derived by Muller (1997) 
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0, 1i M∈ − . This algorithm again applies the positivity constraint. 

 

Modifications and extensions of the  deconvolution algorithms 

Minimization of squares of negative values 
• while in the classic Tikhonov algorithm we minimize the sum of squares of 

contents of all channels, in this case we do not care about channels with positive 
values. The objective of the method is to minimize the sum of squares, but only 
negative elements of the vector . x

• let us define the regularization algorithm 
 ,                                                                    ( )α

−
= +

( ) 1( ) ( ) ( )
0 0

k T k T k TH H Q Q Hx ky

x                 + =
( )( 1) kk THy

where 

  

( ) ( )
( ) ( )0

1 0

,
0

,< =

= 〈

k

k

                       if x i   and i j

Q i j
                        else,

                                      

       
      is the iteration step and k =(0)y y . 

 
• the combinations of negative values are changing and therefore we have to solve 

the full general system of linear equations in each iteration step. 
   
 
Efficient one-fold Gold deconvolution 
 
• above we have presented the basic algorithm of the Gold deconvolution. We 

started from the overdetermined system of linear equations  
 
   .                                                                                     H= ⋅y x
 
• multiplying both sides by  we get TH
 
 T TH H H⋅ = ⋅y x  .                                                                                                  
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• with the respect to the above given reasons for Van Cittert algorithm in original 
Gold algorithm we multiplied both sides by   TH H

 
 ⋅ = ⋅T T T TH HH H HH Hy x                                                                                 
 
• in practice, we have revealed that the second multiplication by the matrix , 

for Gold deconvolution, is redundant. On the contrary, its omitting gives result 
with better resolution in 

TH H

γ -ray spectra. Then let us have the system of linear 
equations in the form 

 
 T= ⋅z x  ,                                                                                                                 
 

where  is Toeplitz matrix . By its substitution into the iterative formula to 
solve systems of linear equations we get 

T TH H

 
 ( ) ( ) (1k k kTµ+ + −x = x z x ) .                                                                                   
 
• now instead of common coefficient µ  let us introduce a local variable relaxation 

factor iµ  for every element of the vector  x
 

 
( ) ( )
( )

k

i

x i
d i

µ =                                                                                                       

 
where 

 
 ( )kT= ⋅d x                                                                                                        
 

and consequently, the resulting formula is 
 

 ( ) ( ) ( ) ( ) ( )
( )

1
k

k z i x i
x i

d i
+ = ; 0, 1i N∈ − .                                                                 

 
• hereafter this algorithm will be called one-fold Gold deconvolution. 
• if we take the initial solution 
 
 ( ) [ ]0 1,1,...,1 T=x                                                                                                  
 

and if all elements in the vectors , h y  are positive (this requirement is fulfilled for 
nuclear spectra), this estimate is always positive. It converges to the least square 
estimate in the constrained subspace of positive solutions. 
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Boosted deconvolution 



 
• in practice, we have observed that the positive definite deconvolutions (Gold, 

Richardson-Lucy, Muller etc.) converge to stable states. Then it is useless to 
increase the number of iterations, the result obtained does not change.  

• however sometimes we are not satisfied with the resolution achieved and want to 
continue in decreasing the sigma of peaks.  

• we have found out that when the solution reaches its stable state it is necessary to 
stop iterations, then to change the particular solution ( )Lx  in a way and repeat again 
the deconvolution. To change the relations among elements of the particular 
solution we need to apply non-linear boosting function to it.  

• the power function proved to give the best results. Then, e.g. the algorithm of 
boosted Gold deconvolution is: 

1. Set the initial solution ( ) [ ]0 1,1,...,1 T=x . 
2. Set required number of repetitions R  and iterations L  
3. Set the number of repetitions 1r = . 
4. According to Gold deconvolution algorithm for 0,1,..., 1= −k L  find solution 

( )Lx . 
5. If  stop calculation, else r R=

a. apply boosting operation, i.e., set 

      ( ) ( ) ( ) ( )0 pLx i x i⎡ ⎤= ⎣ ⎦  ; 0,1,..., 1i N= −                                                       

 and p is boosting coefficient >0 
b.  1r r= +
c. continue in 4. 

 
Problems 
 
We can conclude that there exist many problems inherent to the solution of the problem 
of deconvolution and decomposition in general : 

• ill conditionality of systems 
• influence of the errors due to the measured noise 
• rounding-off errors or truncation errors due to the finite length of computer word 
• resolution 
• computational complexity 
• convergence speed 
• robustness to noise 
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Results 



Invariant convolution systems 

• the principal results of the deconvolution operation with invariant response 
(independent on energy) were presented in 

Reference: 
Morháč M., Kliman J., Matoušek V., Veselský M., Turzo I., Efficient one and two 
dimensional Gold deconvolution and its application to gamma-ray spectra 
decomposition, NIM A 401 (1997) 385. 

• the deconvolution was applied to the experimental results from investigation of 
the prompt  γ -ray emission of the fission fragments from spontaneous fission of 

collected with the Gammasphere spectrometer. In the paper, we employed 
the Gold deconvolution method, which proved to be stable with good results. Its 
basic property is that the solution is always nonnegative. We have extended and 
applied the method to the two-dimensional 

252Cf

γ -ray spectra as well. 

• later we have optimized the Gold deconvolution algorithm that allowed to carry 
out the deconvolution operation much faster and to extend it to three-dimensional 
spectra. The results of the optimized Gold deconvolution for all one-, two-, and 
three-dimensional data are given in 

References: 
Morháč M., Matoušek V., Kliman J., Efficient algorithm of multidimensional 
deconvolution and its application to nuclear data processing, Digital Signal Processing 
13 (2003) 144. 
Morháč M., Matoušek V., Kliman J., Optimized multidimensional nonoscillating 
deconvolution, Journal of Computational and Applied Mathematics 140 (2002) 639. 
 
 
One-fold Gold deconvolution and boosting 
 
a. One-dimensional spectra 
• let us now study the properties of improvements, modifications and extensions of 

the Gold deconvolution algorithm.  
• we shall investigate decomposition capabilities of deconvolution algorithms, i.e., 

the ability to concentrate the area of peaks in the deconvolved spectrum to as few 
channels as possible.  

• first let us take the synthetic one-dimensional spectrum consisting of 3 peaks 
(σ =2) and added noise. Two of them were positioned very close to each other 
(channels 445 and 447) and one in the position 531. 
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• we have applied classic two-fold Gold deconvolution to these data.  
 



 
Figure 5 Synthetic one-dimensional spectrum 

 
• the result (detail containing peaks in the spectrum) after 10000 iteration steps is 

shown in next Figure (thick line original spectrum, thin line deconvolved 
spectrum). 

 

 
Figure 6 Detail of the spectrum from Figure 5 (thick line) and after (thin line) two-

fold Gold deconvolution (10000 iterations) 
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• the resolution is improved but apparently, the method is unable to decompose the 
doublet.  

  
• γ -ray spectrum can be thought of being composed of shifted response 

(instrument) functions.  
 
• so at the input of the detector and electronic system it can be imagined as a sum 

of δ - functions.   
 
• at the output of the system the spectrum represents a linear combination of the 

δ -functions with various amplitudes positioned in various channels, which are 
blurred by the system response function.  

 
• our endeavor in the deconvolution operation is to remove the influence of the 

response function to the utmost, i.e., to deblur the data and in ideal case to obtain 
a spectrum consisting of δ -functions like “peaks”.   

  
• therefore, we continued in the investigations of more efficient deconvolution 

methods. Let us continue with the above presented example.  
 
• when we apply one-fold Gold deconvolution algorithm (again 10000 iterations)  

we can observe an outline of two peaks in the region of channels 440-450 
 
In TSpectrum class the function “Deconvolution1” 
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Figure 7 Detail of the spectrum from Figure 5  before (thick line) and after (thin 
line) one-fold Gold deconvolutions (10000 iterations) 



      
• to see and judge the course of the deconvolution procedure we recorded the sum 

of weighted squares of errors per channel, denoted by letter Q, after each 
iteration step in the form of graph. 

 

 
Figure 8 Sum of weighted squares of errors per one channel in dependence on 

number of iterations 
 
• obviously, after initial decrease of Q at the beginning of the deconvolution 

operation during the following iteration steps it remains constant. Consequently, 
the deconvolved spectrum does not change.  

• therefore, it is useless to continue in the iterations. We stopped the iterations after 
each 200 steps, applied boosting operations according to the above proposed 
algorithm and repeated this procedure 50 times. Entirely it gives also 10000 
iteration steps. 

• the result of the boosted one-fold Gold deconvolution is shown in next two 
figures in both polyline and bars display mode, respectively. 

 
In TSpectrum class the function “Deconvolution1HighResolution” 
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Figure 9 Detail of the spectrum from Figure 5 before (thick line) and after boosted 

one-fold Gold deconvolution (shown in polyline display mode - thin line) 
 

 
Figure 10 The same like Figure 9 only the deconvolved spectrum is shown in bars 

display mode 
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• the method decomposes completely the doublet in channels 445 and 447, while 
preserving the ratio of amplitudes of both peaks. 



• the question is the choice of the boosting coefficient p . Apparently when we 
want to boost peaks in the spectrum it should be greater than 1. 

• otherwise, the peaks would be suppressed (smoothed) and consequently the 
resolution decreased. On the other hand, according to our experience, it should 
not be too big (greater than 2). 

• when choosing it too big,  small peaks will disappear from spectrum at the 
expense of big ones. Empirically we have found that good results are obtained 
with the boosting coefficient p =1.2.  

• further we have applied the sequence of above mentioned methods also to 
experimental γ -ray spectra. However, before application of the deconvolution 
procedure we removed background from the spectrum using the background 
elimination algorithm presented in  

Reference: 
Morháč M., Kliman J., Matoušek V., Veselský M., Turzo I., Background elimination 
methods for multidimensional coincidence gamma-ray spectra, NIM A 401 (1997)  113. 
 
In TSpectrum class the function “Background1” or “Background1General” 
 
 

 
Figure 11 Experimental γ -ray spectrum before (thick line) and after (thin line) 

boosted one-fold Gold deconvolution 
 
• again, boosted one-fold Gold deconvolution decomposes the spectrum practically 

to δ  functions. 
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b. Two-dimensional spectra 



• we have done analogous experiment with two-dimensional spectra. Let us take 
two-dimensional synthetic spectrum containing 17 peaks and added noise.  

• there are 5 overlapped  peaks concentrated in a cluster (positions x-y, 14-40, 17-37, 
19-39,  19-46, 22-43) and 2 overlapped peaks in a doublet (44-46, 48-46). 

 
 

 
Figure 12 Two-dimensional original synthetic spectrum 
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• after two-fold Gold deconvolution (1000 iteration steps), we get the result with  
better resolution than in original data, however the overlapped peaks remained 
unresolved. 

 
 
 



 
Figure 13 Spectrum from Figure 12 after two-fold Gold deconvolution (1000 

iterations) 
 
• the result is slightly better after application of one-fold Gold deconvolution (1000 

iterations).  

 
Figure 14 Spectrum from Figure 12 after one-fold Gold deconvolution (1000 

iterations) 
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• when applying one-fold boosted deconvolution (50 iterations, repeated 20 times 
with boosting coefficient p =1.2) we get the result presented in both shaded and 
bars display modes in next two figures. 

• even the close positioned peaks from cluster and doublet are practically 
completely decomposed to one-channel “peaks”. The positions in the 
deconvolved spectrum coincide with the positions of peaks in the original data. 

 
 

 
Figure 15 Spectrum from Figure 12 after boosted one-fold Gold deconvolution (50 

iterations repeated 20 times) 
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Figure 16 The same like in  Figure 15  displayed in bars display mode 

 
• analogously to one-dimensional data, we applied the deconvolution methods also 

to experimental γ γ−  coincidence two-dimensional spectra (256x256 channels).  
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• in next two Figures we show a part (128x128 channels) of original two-
dimensional  spectrum and after one-fold boosted Gold deconvolution (50 
iterations, with boosting coefficient p =1.2 repeated 20 times).  

 



 
Figure 17 Part of original experimental two-dimensional γ γ−  coincidence 

spectrum 
 
  
 

 
Figure 18 Spectrum from Figure 17 after boosted one-fold deconvolution (50 

iterations repeated 20 times) 
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c. Three-dimensional spectra 
  
• finally, we have implemented the above mentioned variations of the Gold 

deconvolution method also for three-dimensional data.  
• the original three-dimensional synthetic spectrum consisting of 4 peaks 

positioned close to each other (positions x-y-z, 15-15-15 with amplitude A=100,  
12-12-18, A=250, 14-19-12, A=150, 20-20-13 A=50) is shown in next Figure. 

 

 
Figure 19 Three-dimensional synthetic spectrum 

 
• in next Figure we give the same spectrum after one-fold boosted Gold 

deconvolution (50 iterations, with boosting coefficient p =1.2, repeated 20 
times).  

• the volumes of peaks are concentrated separately practically into one channel 
each. The positions of peaks coincide with the peaks positions in original 
spectrum.  
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• the relations among amplitudes of peaks are also approximately preserved. The 
counts scales in both Figures are different (1-250, 1-20000). 

 



 
Figure 20 Spectrum from Figure 19 after boosted one-fold Gold deconvolution (50 

iterations repeated 20 times) 

Linear  systems with changing response 

• so far we assumed to have a linear system with constant response (independent of 
the energy in nuclear spectra). It means that the shape of the response function is 
the same in all range of processed data and the spectrum can be considered to be 
a composition of shifted responses with different amplitudes. 

• if the change of the shape of the response function can be expressed either 
analytically or in any other way, we can make a benefit of this knowledge in 
generation of the system matrix. 
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• an example of employing this technique was applied in the decomposition of 
electron spectra. In the next example we present the processed electron spectrum. 

 



 
Figure 21 One-dimensional electron spectrum 

 
• first few responses at the beginning of the coordinate system are shown in next 

Figure. The shape of the responses is changing with increasing energy (number 
of the response). It should reflect the left-side tail typical for this kind of data. 

 

 
Figure 22 Part of response matrix composed of response electron spectra 
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• using the system matrix, we applied the Gold decomposition algorithm to the 
original electron spectrum (again with boosting). 

• the result of the decomposition (thin line) together with the original data (thick 
line) in log scale is given in the next Figure. 

 
In TSpectrum class the function “Deconvolution1Unfolding” 
 
 

 
Figure 23 Original electron spectrum (thick line) and deconvolved (boosted one-

fold deconvolution - thin line) 
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• to see details close to the baseline we introduce the same spectra in linear scale.  
 



 
Figure 24 Detail of the spectrum from Figure 23 

 
• the results prove in favor of the method in the deconvolution operation. The 

method finds correctly also overlapped small peaks positioned close to the big 
ones. 

 
• the decomposition of continuum γ -ray spectra is another example of linear 

system with changing response and was described in 
 
Reference: 
Jandel M., Morháč M., Kliman J., Krupa L., Matoušek V., Hamilton J. H., Ramaya A. 
V., Decomposition of continuum gamma-ray spectra using synthetized response matrix, 
NIM A 516 (2004) 172. 
 

Study of deconvolution methods and regularization techniques 
• so far, to process experimental data we have employed and studied the Gold 

deconvolution algorithm. 
• for relatively narrow peaks (in the above given examples σ =2) the one-fold 

Gold deconvolution method combined with boosting operation is able to 
decompose spectra practically to δ - functions. 
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• in what follows, we shall study the properties of other methods and regularization 
techniques as well. We shall compare their decomposition capabilities. To make 
these investigations we have chosen a synthetic data (spectrum, 256 channels) 
consisting of 5 very closely positioned, relatively wide peaks (σ =5), with added 
noise (Figure 25).  



• thin lines represent pure Gaussians; thick line is a resulting spectrum with 
additive noise (10% of the amplitude of small peaks).  

• one can notice that the smaller peaks are not observable by eye. It should be 
emphasized that this is an extremely difficult task. The positions, amplitudes and 
areas are given in the following Table1. 

 
 

Peak # Position Height Area 
1 50 500 10159 
2 70 3000 60957 
3 80 1000 20319 
4 100 5000 101596
5 110 500 10159 

Table 1 Positions, heights and areas of peaks in the spectrum shown in Figure 25 
 

 
Figure 25 Testing example of synthetic spectrum composed of 5 Gaussians with 

added noise 
 

 31

• in ideal case, we should obtain the result given in Figure 26. The areas of the 
Gaussian components of the spectrum are concentrated completely to δ - 
functions. 

 



 
Figure 26 The same spectrum like in Figure 25, outlined bars show the contents of 

present components (peaks) 
 
• when solving the overdetermined system of linear equations with data from 

Figure 25 in the sense of minimum least squares criterion without any 
regularization or constraints we obtain the result with large oscillations (Figure 
27). 

• from mathematical point of view, it is the optimal solution in the unconstrained 
space of independent variables. From physical point of view we are interested 
only in a meaningful solution, i.e., the contents of channels should be non-
negative.  
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• therefore, we have to employ regularization techniques and/or to confine the 
space of allowed solutions to subspace of positive solutions. 

 



 
Figure 27 Least squares solution of the system of linear equations without 

regularization 
 
 Methods based on direct solution of system of linear equations. 
 
a. Tikhonov regularization 
• let us apply this algorithm to our data from Figure 25. In Figure 28 we see the 

original spectrum (thick line), the result of the deconvolutions for α =10 000 
(thin line) and  α =100 000 (thin line with circle marks). 

• some outlines of the present peaks are visible (two side small peaks being in 
incorrect positions) but in both cases one can observe oscillations even outside of 
the peak region of the spectrum. 

• with increasing α  the oscillations are softened, but on the other hand, the outline 
of the peak at the position 80 disappears. The deconvolved spectra contain non-
realistic negative values. 
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Figure 28 Solution obtained using Tikhonov method of regularization 

 
• instead of classic 0-th order regularization operator, we can apply also operator 

of the 1-st or 2-nd order differences. The order of the operator influences the 
result. The resolution of peaks for higher orders is slightly better but anyway 
there are the same problems like in the previous example. 
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Figure 29 Illustration of the influence of the order of regularization operator 



 
b. Riley algorithm 
• this method is sometimes called iterated Tikhonov method. Non-regularized is of 

little importance as it leads practically always to oscillating solution. When 
regularized (e.g. employing 0-order regularization operator) we get the result 
similar to classic Tikhonov algorithm. 

• an example of application of Riley algorithm for our testing spectrum is given in 
Figure 30 (1000 iterations, α =25 000 000). 

 

 
Figure 30 Illustration of Riley algorithm of deconvolution 

 
• however, because of its iterative nature, the algorithm lends itself to another kind 

of regularization, so called Projections on Convex Sets - POCS. A projection 
onto the positive x 's  simply means to set all negative elements to zero after 
each iteration. 

 
References: 
  
Backus G.E., Gilbert F., Geophysical Journal of the Royal Astronomical Society, 16 
(1968) 169. 
Backus G.E., Gilbert F., Philosophical Transactions of the Royal Society of London, 266 
(1970) 123. 
Sanchez-Avila C., Behavior of nonlinear POCS higher order algorithms in the 
deconvolution problem, Nonlinear Analysis, Theory, Methods & Applications 30 (1997) 
4909. 
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• when applying it to our example we get the result given in Figure 31  (1000 
iterations, α =10 000 000). Due to POCS regularization negative values 
disappeared from the solution. 

 
Figure 31 Riley deconvolution with POCS regularization 
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• let us go on and let us apply the boosting operation in the same way as in the 
previous examples. For boosting coefficient 1.2, we get the result given in Figure 
32. Dominant two peaks at positions 70 and 100 are well resolved. Though 
visible,  there are still problems with both side peaks and with the peak at 
position 80. 

 
 
 



 
Figure 32 Riley deconvolution with POCS regularization and boosting 

 
c. Minimization of squares of negative values 
• we have proposed a new method of regularization. While in the classic Tikhonov 

algorithm we minimize the sum of squares of contents of all channels, in this 
case we do not care about channels with positive values. We minimize only the 
channels with the negative values. 

• the result of this algorithm after 100 iteration steps for α =1000 is given in 
Figure 33. One can see that it well estimates the positions of peaks. Though 
small, there are still present negative values and oscillations outside of the peaks 
region. The results in peaks regions are presented in Table 2. 

 
 

Peak # Original/Estimated (max) position Original/Estimated area 
1 50/50 10159/10406 
2 70/70 60957/59119 
3 80/80 20319/21721 
4 100/100 101596/102443 
5 110/111 10159/8600 

Table 2 Results of the estimation of peaks in spectrum shown in Figure 33 
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• in the next example (Figure 34), we increased number of iteration steps to 1000. 
The negative values as well as oscillations became smaller. The contents of peaks 
channels have changed only slightly. 

 



 
Figure 33 New algorithm of deconvolution with minimization of squares of negative 

values (100 iteration steps) 
 

 
Figure 34 The same like in Figure 33 but number of iteration steps was 1000 
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• the method works well and gives pretty results. Its disadvantage consists in the 
necessity to solve the full system of linear equations in every iteration step. 



Therefore, it is not applicable for big systems of linear equations (large spectra) 
and for multidimensional data. 

 
Methods based on iterative solution of system of linear equations. 
 
a. Van Cittert algorithm 
• it represents the basic method of this class of deconvolution algorithms. Let us 

continue in our previous example in the study of the properties of various 
deconvolution algorithms. The result achieved by the classic Van Cittert 
algorithm does not differ too much from that obtained by the Tikhonov 
algorithm. 

• again, it oscillates and gives negative values in clusters of channels. However 
when applying POCS regularization after every iteration step the oscillations as 
well as negative values disappear. In Figure 35 we present original spectrum 
(thick line), spectrum deconvolved through the use of classic Van Cittert 
algorithm and regularized (via POCS method) deconvolved spectrum (1000 
iterations).  

• though better, nevertheless, the small peak at the position 110 and peak between 
two strong peaks (position 80) could not be disclosed even by POCS 
regularization of the Van Cittert algorithm. 

 

 
Figure 35 Original spectrum (thick line), deconvolved using Van Cittert algorithm 

(without regularization) and deconvolved using Van Cittert algorithm and 
regularized via POCS method 
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b. Gold algorithm 



• in contradiction to Van Cittert algorithm, the Gold deconvolution (for positive 
response and output data) gives always positive result. The result of Gold 
deconvolution is intrinsically constrained to the subspace of positive solutions.  

• let us apply it to our example. In Figure 36 we give original spectrum and 
deconvolved spectrum using one-fold Gold algorithm (10 000 iterations). We see that 
the peak at the position 80 cannot be resolved and that there is only an indication of 
the right-side small peak at position 110. 

 

 
Figure 36 Original spectrum (thick line) and deconvolved spectrum using one-fold 

Gold algorithm ( 10000 iterations, thin line) 
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• good result for Gold deconvolution is obtained by employing boosting operation 
(Figure 37). It concentrates areas of peaks practically into one channel. 

 



 
Figure 37 Illustration of deconvolution via boosted Gold deconvolution 

 
 
• the results in peaks regions are presented in Table 3. Anyway, there still remains 

the problem in the positions of estimated peaks. Mainly the estimate of the small 
peak at position 110 is quite far from reality. 

 
 

Peak # Original/Estimated (max) position Original/Estimated area 
1 50/49 10159/10419 
2 70/70 60957/58933 
3 80/79 20319/19935 
4 100/100 101596/105413 
5 110/117 10159/6676 

Table 3 Results of the estimation of peaks in spectrum shown in Figure 37 
 
c.Richardson-Lucy algorithm 
• the method is based on Bayes theorem of maximum probability. Like in the case 

of Gold deconvolution the method is positive definite. 
• when applied to our example it exhibits very good properties. On the other hand, 

it converges slowly and its implementation is not so simple like in Gold 
deconvolution.  
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• Figure 38 illustrates its decomposition capabilities. In the deconvolved spectrum 
(after 10 000 iterations) we can see indications even of small peaks  # 3 and 5. 

 



 
Figure 38 Illustration of application of Richardson-Lucy algorithm of 

deconvolution 
 
 
• in Figure 39 we present the result of boosted Richardson-Lucy algorithm (50 

iterations, repeated 20 times with boosting coefficient p =1.2). It decomposes 
completely (to one channel) the multiplet. 
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Figure 39 Spectrum deconvolved using boosted Richardson-Lucy algorithm of 

deconvolution 
 
• the results in peaks regions are presented in Table 4. The errors in positions 

estimation do not exceed one channel. From this point of view, the algorithm 
gives the best result. There is a considerable error in the area estimation of the 
peak # 3. 

 
Peak # Original/Estimated (max) position Original/Estimated area 
1 50/51 10159/11426 
2 70/71 60957/65003 
3 80/81 20319/12813 
4 100/100 101596/101851 
5 110/111 10159/8920 

Table 4 Results of the estimation of peaks in spectrum shown in Figure 39 
 
d. Muller algorithm 
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• for completeness’ sake, we briefly present also results of obtained by application 
of Muller algorithm of deconvolution. Again, it is positive definite algorithm. It 
gives smoother result similar to that obtained by Gold deconvolution. 



 
Figure 40 Illustration of Muller algorithm of deconvolution 

 
• in Figure 41 we give the result obtained by including boosting operation into the 

Muller deconvolution. 
 

 
Figure 41 Illustration of Muller algorithm of deconvolution with boosting 
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• the results are slightly better than in Gold deconvolution. However, the algorithm 
is more time consuming and its implementation more complicated. 

 
Robustness of deconvolution methods 
 
Original synthetic spectrum 
 

 
Figure 42 Original spectrum composed of 9 Gaussians 
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Figure 43 Original synthetic spectrum (thin lines) and the ideal solution (thick 

bars) 
Original matrix 
 

 
Figure 44 Original spectrum with increasing added noise (in % of the amplitude of 

smallest peak in the spectrum) 
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Classic Gold deconvolution 

 
Figure 45 Result of classic Gold deconvolution for increasing level of noise 

 
One-fold Gold deconvolution 

 
Figure 46 Result of one-fold Gold deconvolution for increasing level of noise 
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Gold boosted deconvolution 



 
Figure 47 Result of boosted Gold deconvolution for increasing level of noise 

 
Richardson-Lucy deconvolution 

 
Figure 48 Result of Richardson-Lucy deconvolution for increasing level of noise 
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Richardson-Lucy boosted deconvolution 



 
Figure 49 Result of boosted Richardson-Lucy deconvolution for increasing level of 

noise 
 
 
Movies 
 

Peak identification 
• the basic aim of one-dimensional peak searching procedure is to identify 

automatically the peaks in a spectrum with the presence of the continuous 
background and statistical fluctuations - noise.  

• the common problems connected with correct peak identification are 
• non-sensitivity to noise, i.e., only statistically relevant peaks should be 

identified. 
• non-sensitivity of the algorithm to continuous background. 
• ability to identify peaks close to the edges of the spectrum region. Usually 

peak finders fail to detect them. 
• resolution, decomposition of doublets and multiplets. The algorithm should 

be able to recognize close positioned peaks. 
• ability to identify peaks with different σ . 

General peak searching algorithm based on smoothed second 

differences  
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• the essential one-dimensional peak searching algorithm is based on smoothed 
second differences (SSD) that are compared to its standard deviations. 

 
Reference: 
Mariscotti M.A., A method for automatic identification of peaks in the presence of 
background and its application to spectrum analysis, NIM 50 (1967) 309. 
 
• we have extended the above presented SSD based method of peak identification 

for two-dimensional and in general for multidimensional spectra. In addition to 
the above given requirements now the algorithm must be insensitive to the lower-
fold coincidences peak-background (ridges) and their crossings. 

• the multidimensional peak searching algorithm based on sophisticated technique 
employing SSD was derived and described in detail in 

 
Reference: 
Morháč M., Kliman J., Matoušek V., Veselský M., Turzo I., Identification of peaks in 
multidimensional coincidence gamma-ray spectra, NIM A 443 (2000) 108. 
 

High resolution peak searching algorithm  

One-dimensional spectra 
• to improve the resolution capabilities we have proposed a new algorithm based 

on Gold deconvolution.  
• however, unlike SSD algorithm before applying the deconvolution algorithm we 

have to remove the background using one of the background elimination 
algorithm 

• let us apply the high resolution algorithm to the synthetic spectrum with several 
peaks located very close to each other. The result for σ =2 and threshold=4% is 
shown in next Figure.  
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• the method discovers all 19 peaks in the spectrum. It finds also small peak at the 
position 200 and decomposes the cluster of peaks around the channels 551-568. 
In the bottom part of the Figure, we present the deconvolved spectrum. 

 
 



 
Figure 50 Example of synthetic spectrum with doublet and multiplet and its 

deconvolved spectrum (in bottom part of picture) 
 
• the detail of peaks in cluster is shown in the following Figure. In the upper part 

of the Figure one can see original data and in the bottom part the deconvolved 
data.  

• the method finds also the peaks about existence of which it is impossible to guess 
from the original data. 

In TSpectrum class the function “Search1HighRes” 
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Figure 51 Detail of multiplet from Figure 50 

 
Two-dimensional spectra 
• analogously to one-dimensional case to treat the resolution problem one has to 

employ the high resolution method based on the Gold deconvolution. 
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• the result of the search using the high resolution algorithm for σ =2 and 
threshold=5% applied to the previous example is shown in next Figure and its 
appropriate deconvolved spectrum in Figure 53. It discovers correctly all peaks 
including the small peak (position 46, 48) in the doublet.  

 



 
Fig 52 Result of the search using high resolution method based on Gold 

deconvolution 
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Figure 53 Deconvolved spectrum of the data from Figure 52 



Sigma range peak search algorithm  

• in previous sections we have demonstrated the ability of the peak searching 
algorithms to identify peaks with different σ . To some extent, the algorithm is 
robust to the variations of this parameter.  

• however, for large scale of the range of σ  and for poorly resolved peaks both 
previously designed algorithms fail to work properly. This is the case, e.g. for 
high energy spectra. 

 
Outline of the algorithm 
 
For every  σ  the algorithm comprises two deconvolutions. The principle of the method 
is as follows: 

a. for 1iσ σ=  up to  2σ  
b. we set up the matrix of response functions (Gaussians) according to next Figure. 

All peaks have the same σ σ= i . The columns of the matrix are mutually shifted 
by one position. We carry out the Gold deconvolution of the investigated 
spectrum. 

 

 
Figure 54 Response matrix consisting of Gaussian functions with the same σ  

      
c. In the deconvolved spectrum, we find local maxima higher than given threshold 

value and include them into the list of 1-st level candidate peaks. 
d. Next, we set up the matrix of the response functions for the 2-nd level 

deconvolution.  
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     There exist three groups of positions: 



- positions where the 1-st level candidate peaks were localized. Here we generate 
response (Gaussian) with  iσ . 

- positions where the 2-nd level candidate peaks were localized in the previous 
steps 1 k iσ σ σ≤ <  (see next step).  For each such a position, we generate the 
peak with the recorded kσ . 

- for remaining free positions where no candidate peaks were registered, we have 
empirically found that the most suitable functions are the block functions with 
the width  3 iσ±  from the appropriate channel. 

The situation for one 2-nd level candidate peak in position 2j  with kσ  and for one 
1-st level candidate peak in the position 1j  ( iσ ) is depicted in next Figure. We 
carry out the 2-nd level Gold deconvolution. 

e. Further, in the deconvolved spectrum we find the local maxima greater than given 
threshold value. 

    We scan the list of the 2-nd level candidate peaks: 
- if in a position from this list there is not local maximum in the deconvolved 
 spectrum, we erase the candidate peak from the list. 
We scan the list of the 1-st  level candidate peaks 
- if in a position from this list there is the local maximum in the deconvolved 

spectrum, we transfer it to the list of the 2-nd level candidate peaks.  
 

 
Figure 55 Example of response matrix consisting of block functions and Gaussians 

with different σ  
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f. Finally peaks that remained in the list of the 2-nd level candidate peaks are 
identified as found peaks with recorded positions and σ . 

 



• the method is rather complex as we have to repeat two deconvolutions for the 
whole range of σ . 

 
• in what follows we illustrate in detail practical aspects and steps during the peak 

identification. The original noisy spectrum to be processed is shown in next 
Figure. The σ  of peaks included in the spectrum varies in the range 3 to 43. It 
contains 10 peaks with some of them positioned very close to each other. 

 

 
Figure 56 Noisy spectrum containing 10 peaks of rather different widths 
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• as the SRS algorithm is based on the deconvolution in the first step we need to 
remove background.  

 



 
Figure 57 Spectrum from  Figure 56 after background elimination 

 
• at every position, we have to expect any peak from the given σ  range (3, 43). To 

confine the possible combinations of positions and σ  we generated inverted 
positive SSD of the spectrum for every σ  from the range.  
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• we get matrix shown in next Figure. We consider only the combinations with 
non-zero values in the matrix. 

 
 



 
Figure 58 Matrix of inverted positive SSD 

 
• the SRS algorithm is based on two successive deconvolutions. In the first level 

deconvolution, we look for peak candidates. We changed σ  from 3 up to 43. 
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• for every σ  we generated response matrix and subsequently we deconvolved 
spectrum from Figure 57. Again, we arranged the results in the form of matrix 
given in Figure 59. 

 



 
Figure 59 Matrix composed of spectra after first level deconvolution for responses 

changing σ  from 3 to 43 
 
• successively according to the above-given algorithm from these data, we pick up 

the candidates for peaks, construct the appropriate response matrices and 
deconvolve again the spectrum from Figure 57. 
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• the evolution of the result for increasing  σ  is shown in next Figure. 



 
Figure 60 Matrix composed of spectra after second level deconvolutions 

 

 60

• from the last row of data, which are in fact spikes, we can identify (applying 
threshold parameter) the positions of peaks. The found peaks (denoted by 
markers with channel numbers) and the original spectrum are shown in next 
Figure. 

 
 



 
Figure 61 Original spectrum with found peaks denoted by markers 

 
• in Table 5 we present the result of generated peaks and estimated parameters. In 

addition to the peak position the algorithm estimates even the σ  of peaks. It is 
able to recognize also very closely positioned peaks.  

• however, the estimate of the parameters is in some cases rather inaccurate mainly 
in poorly separated peaks of the spectrum. The problem is very complex and 
sometimes it is very difficult to decide whether a lobe represents two, eventually 
more, close positioned narrow peaks or one wide peak.  
 

Peak # Generated peaks (position/sigma) Estimated peaks (position/sigma)
1 118/26 119/23 
2 162/41 157/26 
3 310/4 309/4 
4 330/8 330/7 
5 482/22 485/23 
6 491/24 487/27 
7 740/21 742/22 
8 852/15 853/16 
9 954/12 952/12 
10 989/13 990/12 
Table 5 Results of the estimation of peaks in spectrum shown in Figure 61 

 
• we have verified the algorithm by its application to other spectra of this kind 

generated by especially proposed ROOT benchmark. The algorithm gives 
satisfactory results, though due to its complexity it is quite time consuming. 

 61

  



Conclusions 
 
• the deconvolution methods represent an efficient tool to improve the resolution in 

the data.  
• we have discussed and analyzed widely the existing deconvolution methods.  
• we have developed modifications and extensions of iterative deconvolution 

algorithms, specific (new) regularization technique 
• we proposed high-resolution  peak searching algorithm based on Gold 

deconvolution for one-, and two-dimensional spectra. All these algorithms are 
derived only for given σ  parameter. 

• we have developed sophisticated algorithm of σ -range peak searching. 
• the deconvolution and peak finder methods (and others) have been implemented 

in TSpectrum class of ROOT system. 
 
Additional information: 
 
http://www.fu.sav.sk/nph/projects/ProcFunc
http://www.fu.sav.sk/nph/projects/DaqProvis
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http://www.fu.sav.sk/nph/projects/ProcFunc
http://www.fu.sav.sk/nph/projects/DaqProvis
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