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• Production of jets in e+e-

• Methodology

• The use of Clustering Techniques for the 
Classification of physics processes in e+e-

• Conclusion

The use of Clustering Techniques for the       The use of Clustering Techniques for the       
Classification of High Energy Physics DataClassification of High Energy Physics Data
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Production of jets inProduction of jets in ee++ee--

•Annihilation  e+e - →→→→ W +W-, ZZ, ZH 
(H:Higgs) (LEP2  and beyond)

•Fragmentation of  quarks and gluons 
and production of unstable particles

•Decay of unstable particles to observed 
hadrons

•Decay of produced bosons:     
γγγγ*/ Z0 →→→→ qq , W +→→→→ q1 q2 ,W -→→→→ q3q4
H0 →→→→ qq …) 

jiqq

W +
e + e -

W -

Decay of unstable 
particles Confinement Region 

Fragmentation of 
quarks and gluons

Jet of 
hadrons

Jet of 
hadrons

Perturbative
Region
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Production of jets inProduction of jets in ee++ee--

LEP2 and beyond: observation of 
processes with dominants  jets topologies: 

• Production of pairs W +W - :                                  
e+e- →→→→ W +W -→→→→ qqlννννl , qqqq

• Emergence of new particles as the Higgs 
Boson:
e+e-→→→→ ZH→→→→ qqbb,νννννννν bb (ττττ+ττττ -qq , qqττττ+ττττ -)

• Production of new processes:             
e+e- →→→→ ZZ →→→→ qq lννννl , qqqq,...
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HiggsHiggs boson Productionboson Production

Decay Modes:
• decay into quarks:   H →→→→ bb     and  H→→→→ cc
• leptonic decay         H →→→→ ττττ+ ττττ -

• gluonic decay         H →→→→ g g
• decay into virtual W boson pair: H →→→→ W +W -

Higgs-strahlung: 
e+ e- →→→→ ZH

Fusion WW

• Cross Section • Branching Ratio



Production of jets inProduction of jets in ee++ee--

• HZ ALEPH candidate                
e+ e- →→→→ H Z →→→→ qqbb
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Jets analysis in Jets analysis in ee++ee--

• These analyses are subjected to the identification 
of the different processes,  with dominant jets 
topologies with a very high efficiency

• Analysis of W bosons pairs and research of new particles as the Higgs boson.

Prediction of limits concerning 
the mass of the Higgs boson

• Measure of the masse of W
• Measure of the Triple Gauge Coupling (TGC);  

coupling between 3 bosons               

• Need to use Pattern Recognition methods 
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• Characterisation of events: research and selection of  p variables or 
attributes

• Interpretation: definition of  k classes

• Learning: association ( xi→→→→ yj )  ⇒⇒⇒⇒ f
• Decision  ( xi→→→→ yj )  using  f  for any  xi

 f: X→→→→ Y
 xi ∈∈∈∈ X→→→→ yj ∈∈∈∈ Y 
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Pattern RecognitionPattern Recognition

Mostafa Mjahed,                           ACAT 05, DESY, Zeuthen, 25/05/2005                                8



• Statistical Methods
• Principal Components Analysis PCA
• Decision Trees
• Discriminant Analysis  …
• Clustering (Hierarchical, K-means, …)

• Connectionist Methods 
• Neural Networks
• Genetic Algorithms …

• Other Methods
• Fuzzy Logic, Wavelets ...

Pattern Recognition MethodsPattern Recognition Methods
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Hierarchical Clustering TechniqueHierarchical Clustering Technique

C

C1

C6  C3 C4 

C7

D 

C2  

C5  

C7 C8 ... ... ... ......

• 1. The distances between all the pairs of events  xi and  xj are computed 
• 2. Choice of the two most distant events: C→→→→ (C1 , C2 )
• 3. Assignation of all  xi  to the closer class C1 or C2

• 4. Repeat the steps 2 and 3 for C1→→→→ (C3 , C4 ) and C2→→→→ (C5 , C6)

• 5. Repeat the step 4  for Ci→→→→ (Cj , Ck )
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KK--Means Clustering TechniqueMeans Clustering Technique

Given K, the K-means algorithm is implemented in 4 steps:

• Partition events into K non empty subsets
• Compute seed points as the centroids (mean point) of the  cluster
• Assign each event to the cluster with the nearest seed point
• Go back to step 2, stop when no more new assignment
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Parameters:

• Choice of distances  • Supervised or unsupervised Learning



Clustering by a Clustering by a PeanoPeano Scanning TechniqueScanning Technique

Example of an analytical Peano square-filling curve 

• Decomposition of data into p-dimensional unit hyper-cube                           
Ip = [0, 1] ×××× [0, 1] ××××…××××[0, 1]

• Construction of a space filling curve Fp (t): I1 →→→→ Ip

• Compute the position of X (data) on the SFC, i.e., t = ψψψψ(x)
• Find the set K of  nearest neighbours of t in the transformed learning set T
• Classify the test sample to the nearest class in set K
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Efficiency and Purity Efficiency and Purity 
of a Pattern Recognition Methodof a Pattern Recognition Method

• Efficiency of classification for events 
of class Ci

i

ii
i N

NE =

• Purity of classification for events      
of class Ci

i

ii
i M

NP =

• Validation• ValidationValidation
Test 

events
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ApplicationApplication

e+e-→→→→ W+W-→→→→ qqqq

e+ e-→→→→ HZ→→→→ bbqq

4 jets

e+e-→→→→ ZZ→→→→ qqqq

e+ e-→→→→ γγγγ /Z→→→→ qqqq

• Characterisation of the Higgs boson in the 4 jets channel,               
e+e-→→→→ ZH→→→→ qqbb , by clustering techniques
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4 jets event

HZ event Background 
γγγγ /Z, W+W -, ZZ

• Research of discriminating variables: 
variables characterizing the presence of b quarks

• Events generated by the LUND MC (JETSET 7.4 and  PYTHIA 5.7)  
at √√√√ s = 300 GeV, in the 4 jets  channel

• e+ e-→→→→ HZ→→→→ qqbb (signal: Higgs boson events), MH = 125 GeV/c2

• e+e-→→→→ W +W -→→→→ qqqq, e+ e- →→→→ Z/γγγγ→→→→ qqgg, qqqq , e+ e- →→→→ ZZ→→→→ qqqq
(Background events)

�

Characterisation of the Higgs boson in 4 jets channel   Characterisation of the Higgs boson in 4 jets channel   
ee++ee--→→→→→→→→ ZHZH→→→→→→→→ qqbbqqbb by the use of clustering techniquesby the use of clustering techniques
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VariablesVariables

• Mincos:  Min (cos θθθθ ij + cos θθθθ kl ):
The minimal sum of cosines by using all 

the permutations  ijkl.

• Max (Mjet), Max (Ejet):                     
the maximal value of the jet masses and jet 
energies in each event

• Mmin , Emin :                                         
the 4th value of the jet masses and  jet 
energies in each event

• Rapidity-impulsion weighted   
Moments Mnm :
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• Max3 (Mjet), Max3 (Ejet):
the 3th value of the jet masses and jet 
energies in each event

• Boosted Aplanarity:  BAP
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• Bed: Event broadening

Bed = Min Bhemi
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• Test Function Fj
,  

j=1, …, 17.
• Bj ,Wj: Between and Within-classes  

Variance Matrix for variable j.
• n total number of events (signal+  

background), 
• k number of classes (2)

Discriminating Power of variablesDiscriminating Power of variables

j

j
j W

B
k

knF
)1(
)(

−−−−
−−−−====

• The discriminating power of each 
variable Vj is proportional to the values      
of   Fj (j=1, …, 17). 
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C

CHZ CBack

• The most separating distance DHZ/Back between the 
classes CHZ and CBack is searched and the corresponding 
cut DHZ/Back

* is computed. 
• The classification of a test event x0 is then obtained 

according to the algorithm:

if DHZ/Back (xo) ≥≥≥≥ DHZ/Back
* then  xo ∈∈∈∈ CHZ   else xo ∈∈∈∈ CBack

• DHZ/Back = 0.01 Mincos +0.32 MaxE + 0.11 Max3E + 0.52Emin + 0.36 BAP   
+ 0.87 Bed + 0.41 M 11 + 0.38 M 31

• DHZ/Back
*  = 2.51 

Hierarchical Clustering ClassificationHierarchical Clustering Classification

• Classification of test events



KK--Means Clustering ClassificationMeans Clustering Classification

For K=2, the K-means algorithm is implemented in 4 steps:

• Partition events into 2 non empty subsets
• Compute seed points as the centroids (mean point) of the  

cluster
• Assign each event to the cluster with the nearest seed point
• Go back to step 2, stop when no more new assignment

• Classification of test events

C

CHZ CBack
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PeanoPeano space filling curve Clustering space filling curve Clustering 
ClassificationClassification

• By using the training sample: 
X = (xi (M11, M21, M31 , M41, M51, M61, T, S, BAP, Bed, Mincos, MaxE, MaxM, 

Max3E,    Max3M, Emin, Mmin), i=1,…, N=4000) and the known class labels:       
CHZ, Cback , an approximate Peano space filling curve is obtained, allowing to 
transform the 17-dimensional space into unit interval. 

• Classification of test events
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ComparisonComparison
• Comparison between the 3 clustering methods

Hierarchical 
Clustering 

• Purity of classification vs cut’s 
values D* in hierarchical clustering

DHZ/Back = 0.01 Mincos +0.32 MaxE + 0.11 Max3E 
+ .52Emin + 0.36 BAP + 0.87 Bed + 0.41 M11   
+ 0.38 M31 DHZ/Back

*  = 2.51 

DHZ/Back
*  =  [1.65, 1.7,  1.75, …, 2.51, …, 2.65, 

…].
⇒⇒⇒⇒ Purity(%) =  [50, 51, 52, …,80]



•• VariablesVariables

ConclusionConclusion

• Characterisation of Higgs Boson events: 
The most discriminating variables are: Mincos, MaxE, Max3E, Emin, BAP, Bed.       
They show the importance of information allowing to separate between b quark and 
udsc-quarks (separation between HZ events and background:   H →→→→ bb    ).

• Other variables as Emin, Mmin, BAP, Bed, Mincos, may be used to identify events 
emerging from the background  (i.e. e+e- →→→→ Z /γγγγ →→→→ 4 jets). 

• Discrimination (γγγγ /Z ) / WW / ZZ:                                                  
using dijets properties: charge, broadness, presence of b quarks ...

e+e-→→→→ WW

e+e-→→→→ HZ

4 jets

e+e-→→→→ ZZ

e+e-→→→→ γγγγ /Z
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Conclusion (cont)
•• MethodsMethods

• Importance of  Pattern Recognition Methods 

• The improvement of an any identification is subjected to the multiplication 
of multidimensional effect offered by PR methods and the discriminating 
power of the proposed variable.   

• Clustering techniques: comparative to other statistical methods : 
Discriminant Analysis, Decision trees,...  

• Clustering techniques: less effective than neural networks and 
non linear discriminant analysis methods

• The hierarchical clustering method is more efficient  than the other clustering 
techniques: its performances are in average 1 to 3 %  higher than those obtained 
with the two other methods. 

• Other cut's values DHZ/Back
*  give other efficiencies and purities:  We can reach 

values of purity permitting to identify the HZ events more efficiently
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