

ACATO5 May 22 - 27, 2005 DESY, Zeuthen, Germany

The use of Clustering Techniques for the Classification of High Energy Physics Data

Mostafa MJAHED Ecole Royale de l'Air, Mathematics and Systems Dept. Marrakech, Morocco

Mostafa Mjahed,

The use of Clustering Techniques for the Classification of High Energy Physics Data

Production of jets in e⁺e⁻

Methodology

The use of Clustering Techniques for the Classification of physics processes in e⁺e⁻

Conclusion

2

Mostafa Mjahed,

Production of jets in e⁺e⁻

•Annihilation $e^+e^- \rightarrow W^+W^-$, ZZ, ZH (H:Higgs) (LEP2 and beyond)

• Decay of produced bosons: $\gamma^{*}/Z^{0} \rightarrow q\overline{q}, W^{+} \rightarrow q_{1}q_{2}, W^{-} \rightarrow q_{3}q_{4}$ $H^{0} \rightarrow q\overline{q} \dots$

•*Fragmentation of quarks and gluons and production of unstable particles*

•Decay of unstable particles to observed hadrons

Mostafa Mjahed,

Production of jets in e⁺e⁻

v.v.Z

220

4

240 √s (GeV)

Mostafa Mjahed,

Higgs boson Production

Higgs-strahlung: $e^+ e^- \rightarrow ZH$

Decay Modes:

- decay into quarks: $H \rightarrow bb$ and $H \rightarrow cc$
- *leptonic decay* $H \rightarrow \tau^+ \tau^-$
- gluonic decay $H \rightarrow g g$
- decay into virtual W boson pair: $H \rightarrow W^+W^-$

• Cross Section

Branching Ratio

Production of jets in e⁺e⁻

• HZ ALEPH candidate $e^+ e^- \rightarrow H Z \rightarrow q \overline{q} b \overline{b}$

Mostafa Mjahed,

Jets analysis in e⁺e⁻

• Analysis of W bosons pairs and research of new particles as the Higgs boson.

Measure of the masse of W
Measure of the Triple Gauge Coupling (TGC); coupling between 3 bosons

> Prediction of limits concerning the mass of the Higgs boson

These analyses are subjected to the identification of the different processes, with dominant jets topologies with a very high efficiency

Need to use Pattern Recognition methods

Mostafa Mjahed,

Pattern Recognition

- Characterisation of events: research and selection of p variables or attributes
- **Interpretation:** *definition of k classes*
- Learning: association $(x_i \rightarrow y_j) \Rightarrow f$
- Decision $(x_i \rightarrow y_j)$ using f for any x_i

8

Pattern Recognition Methods

Statistical Methods

- Principal Components Analysis PCA
- Decision Trees
- Discriminant Analysis ...
- Clustering (Hierarchical, K-means, ...)
- Connectionist Methods
 - Neural Networks
 - Genetic Algorithms ...
- Other Methods
 - Fuzzy Logic, Wavelets ...

9

Hierarchical Clustering Technique

- 1. The distances between all the pairs of events x_i and x_j are computed
- 2. Choice of the two most distant events: $C \rightarrow (C_1, C_2)$
- 3. Assignation of all xi to the closer class C_1 or C_2
- 4. Repeat the steps 2 and 3 for $C_1 \rightarrow (C_3, C_4)$ and $C_2 \rightarrow (C_5, C_6)$
- 5. Repeat the step 4 for $C_i \rightarrow (C_j, C_k)$

K-Means Clustering Technique

Given K, the K-means algorithm is implemented in 4 steps:

- Partition events into K non empty subsets
- Compute seed points as the centroids (mean point) of the cluster
- Assign each event to the cluster with the nearest seed point
- Go back to step 2, stop when no more new assignment

Parameters: Choice of distances

Supervised or unsupervised Learning

Mostafa Mjahed,

Clustering by a Peano Scanning Technique

Example of an analytical Peano square-filling curve

- Decomposition of data into p-dimensional unit hyper-cube $I_p = [0, 1] \times [0, 1] \times ... \times [0, 1]$
- Construction of a space filling curve $F_p(t): I_1 \rightarrow I_p$
- Compute the position of X (data) on the SFC, i.e., $t = \psi(x)$
- Find the set K of nearest neighbours of t in the transformed learning set T
- Classify the test sample to the nearest class in set K

Efficiency and Purity of a Pattern Recognition Method

Validation

Test events	Class ification		
	C_1	C_2	
$C_i: N_i$	N 11	N ₁₂	
$C_2: N_2$	N_{21}	N 22	
Total	M	M 2	

• Efficiency of classification for events of class C_i

$$E_i = \frac{N_{ii}}{N_i}$$

• Purity of classification for events of class C_i

$$P_i = \frac{N_{ii}}{M_i}$$

13

Mostafa Mjahed,

Application

• Characterisation of the Higgs boson in the 4 jets channel, $e^+e^- \rightarrow ZH \rightarrow q\bar{q}b\bar{b}$, by clustering techniques

5

14

Mostafa Mjahed,

Characterisation of the Higgs boson in 4 jets channel $e^+e^- \rightarrow ZH \rightarrow q\bar{q}b\bar{b}$ by the use of clustering techniques

- Events generated by the LUND MC (JETSET 7.4 and PYTHIA 5.7) at $\sqrt{s} = 300 \text{ GeV}$, in the 4 jets channel
- $e^+ e^- \rightarrow HZ \rightarrow q\bar{q}bb$ (signal: Higgs boson events), $M_H = 125 \ GeV/c^2$
- $e^+e^- \rightarrow W^+W^- \rightarrow qqqq$, $e^+e^- \rightarrow Z/\gamma \rightarrow qqgg$, qqqq, $e^+e^- \rightarrow ZZ \rightarrow qqqq$ (Background events)

Research of discriminating variables: variables characterizing the presence of b quarks

Variables

• Thrust $T = max \sum_{i=1}^{N} (\vec{p}_{i} \cdot \hat{n}) = max \sum_{i=1}^{N} |\vec{p}_{i||}|$ • Sphericity S $S = min S(\hat{n}) \qquad S(\hat{n}) = \frac{3}{2} \frac{\sum_{i=1}^{N} \vec{p}_{iT/\hat{n}}^{2}}{\sum_{i=1}^{N} \vec{p}_{i}^{2}}$ • Boosted Aplanarity: BAP

oosted Aplanarity: BAP
BAP =
$$\frac{3}{2}min \frac{\sum_{i=1}^{N} |\vec{p}_{iTout}|^2}{\sum_{i=1}^{N} \vec{p}_i^2}$$

• *Max3* (*M*_{jet}), *Max3* (*E*_{jet}): the 3th value of the jet masses and jet energies in each event

• Bed: Event broadening

 $Bed = Min B_{hemi}$

$$B_{hemi} = \frac{\sum_{i=1}^{n_t} |p_{iT}|}{\sum_{i=1}^{n_t} |p_i|}$$

• Mincos: Min $(\cos \theta_{ij} + \cos \theta_{kl})$:

The minimal sum of cosines by using all the permutations ijkl.

• *Max* (*M*_{jet}), *Max* (*E*_{jet}): the maximal value of the jet masses and jet energies in each event

• M_{min} , E_{min} : the 4th value of the jet masses and jet energies in each event

• Rapidity-impulsion weighted Moments M_{nm} :

 η_i rapidity:

$$M_{nm} = \sum_{i \in Jet} \eta_i^{n} \cdot p_{iT}^{m}$$
$$\eta_i = \frac{1}{2} \cdot Log(\frac{E_i + p_{i//}}{E_i - p_{i//}})$$

Mostafa Mjahed,

Discriminating Power of variables

• Test Function F_j

 $F_{j} = \frac{(n-k)}{(k-1)} \frac{B_{j}}{W_{j}}$ j=1, ..., 17.

- B_j,W_j: Between and Within-classes Variance Matrix for variable j.
- n total number of events (signal+ background),
- k number of classes (2)

• The discriminating power of each variable V_j is proportional to the values of F_j (j=1, ..., 17).

	Pouvoir discriminant: F					
Variable	HZ/WW	HZ/qqqq	HZ/ZZ	HZ/All		
Т	0.042	0.092	0.005	0.085		
Bed	0.021	0.213	0.056	0.132		
S	0.066	0.084	0.032	0.054		
Mincos	0.132	0.137	0.057	0.212		
BAP	0.124	0.145	0.018	0.017		
Max (Ejet)	0.141	0.116	0.088	0.112		
Max (M _{je})	0.082	0.134	0.115	0.113		
Max3 (Ejev)	0.115	0.081	0.054	0.101		
Max3 (M _{jet})	0.031	0.095	0.059	0.082		
Enin	0.024	0.212 0.053		0.121		
Mmin	0.018	0.151	0.043	0.094		
M ₁₁	0.045	0.012	0.085	0.081		
M ₂₁	0.041	0.011	0.048	0.035		
M31	0.039	0.018	0.069	0.068		
M ₄₁	M ₄₁ 0.048 0.016		0.071	0.051		
M ₅₁	0.051	0.012	0.082	0.032		
M ₆₁	0.052	0.014	0.021	0.029		

17

Hierarchical Clustering Classification

- The most separating distance $D_{HZ/Back}$ between the classes C_{HZ} and C_{Back} is searched and the corresponding cut $D_{HZ/Back}$ * is computed.
- The classification of a test event x_0 is then obtained according to the algorithm:

if $D_{HZ/Back}(x_o) \ge D_{HZ/Back}^*$ then $x_o \in C_{HZ}$ else $x_o \in C_{Back}$

• $D_{HZ/Back} = 0.01 \text{ Mincos } +0.32 M_{axE} + 0.11 M_{ax3E} + 0.52E_{min} + 0.36 BAP + 0.87 Bed + 0.41 M_{11} + 0.38 M_{31}$

• $D_{HZ/Back}^* = 2.51$

Classification of test events

		Hierarchical clustering		
Test events		$C_{\!_{HZ}}$		Back
C_{E}	_{IZ} : 1000	601	399	
	C _{YZ} :1000	403		597
C _{Back}	C _{ZZ} :1000	405	1791	595
	Cww:1000	401	-	599

K-Means Clustering Classification

For K=2, the K-means algorithm is implemented in 4 steps:

- Partition events into 2 non empty subsets
- Compute seed points as the centroids (mean point) of the cluster
- Assign each event to the cluster with the nearest seed point
- Go back to step 2, stop when no more new assignment

Test events		K-Means clustering			
		$C_{\!_{H\!Z}}$		Back	
$C_{\!H}$	_Z : 1000	591	409		
C _{Back}	C _{YZ} :1000	411	1764	589	
	CZZ :1000	415		585	
	C _{WW} :1000	410		590	

Peano space filling curve Clustering Classification

• By using the training sample:

 $X = (x_i(M_{11}, M_{21}, M_{31}, M_{41}, M_{51}, M_{61}, T, S, BAP, Bed, Mincos, M_{axE}, M_{axM}, M_{ax3E}, M_{ax3M}, E_{min}, M_{min}), i=1,..., N=4000) and the known class labels:$ $<math>C_{HZ}, C_{back}$, an approximate Peano space filling curve is obtained, allowing to transform the 17-dimensional space into unit interval.

9

Mostafa Mjahed,

Comparison

Comparison between the 3 clustering methods

Method	Efficiency (%)		Purity (%)	
	C _{HZ}	C _{Back}	C _{HZ}	C _{Back}
Hierarchical Clustering	60.1	59.7	59.8	59.9
K-means Clustering	59.1	58.8	58.9	58.9
Peano scanning	58.1	56.9	57.4	57.6

• Purity of classification vs cut's values *D*^{*} in hierarchical clustering

$$\begin{split} D_{HZ/Back} &= 0.01 \ Mincos \ +0.32 \ M_{axE} \ + \ 0.11 \ M_{ax3E} \\ &+ \ .52E_{min} \ + \ 0.36 \ BAP \ + \ 0.87 \ Bed \ + \ 0.41 \ M_{11} \\ &+ \ 0.38 \ M_{31} \qquad \qquad D_{HZ/Back}^{\ *} \ = \ 2.51 \end{split}$$

$$D_{HZ/Back}^{*} = [1.65, 1.7, 1.75, ..., 2.51, ..., 2.65,$$

 $\Rightarrow Purity(\%) = [50, 51, 52, ..., 80]$

Conclusion

• Characterisation of Higgs Boson events: The most discriminating variables are: Mincos, M_{axE} , M_{ax3E} , E_{min} , BAP, Bed. They show the importance of information allowing to separate between b quark and udsc-quarks (separation between HZ events and background: $H \rightarrow bb$).

• Other variables as E_{min} , M_{min} , BAP, Bed, Mincos, may be used to identify events emerging from the background (i.e. $e^+e^- \rightarrow Z/\gamma \rightarrow 4$ jets).

 Discrimination (γ /Z) / WW / ZZ: using dijets properties: charge, broadness, presence of b quarks ...

Mostafa Mjahed,

Conclusion (cont)

• Methods

- Importance of Pattern Recognition Methods
- The improvement of an any identification is subjected to the multiplication of multidimensional effect offered by PR methods and the discriminating power of the proposed variable.
- The hierarchical clustering method is more efficient than the other clustering techniques: its performances are in average 1 to 3 % higher than those obtained with the two other methods.
- Other cut's values $D_{HZ/Back}^*$ give other efficiencies and purities: We can reach values of purity permitting to identify the HZ events more efficiently
- Clustering techniques: <u>comparative</u> to other statistical methods : Discriminant Analysis, Decision trees,...
- Clustering techniques: <u>less effective</u> than neural networks and non linear discriminant analysis methods

23