

ACATO5 May 22 - 27, 2005 DESY, Zeuthen, Germany

Search for the Higgs boson at LHC by using Genetic Algorithms

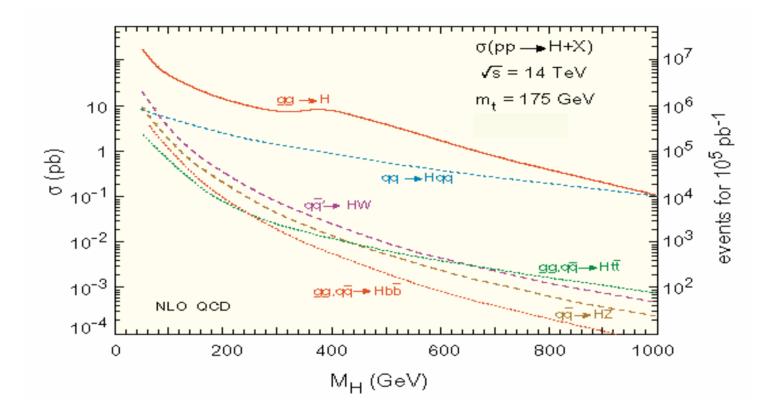
Mostafa MJAHED Ecole Royale de l'Air, Mathematics and Systems Dept. Marrakech, Morocco

Search for the Higgs boson at LHC by using Genetic Algorithms

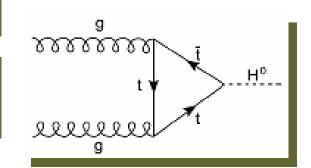
Introduction

Genetic Algorithms

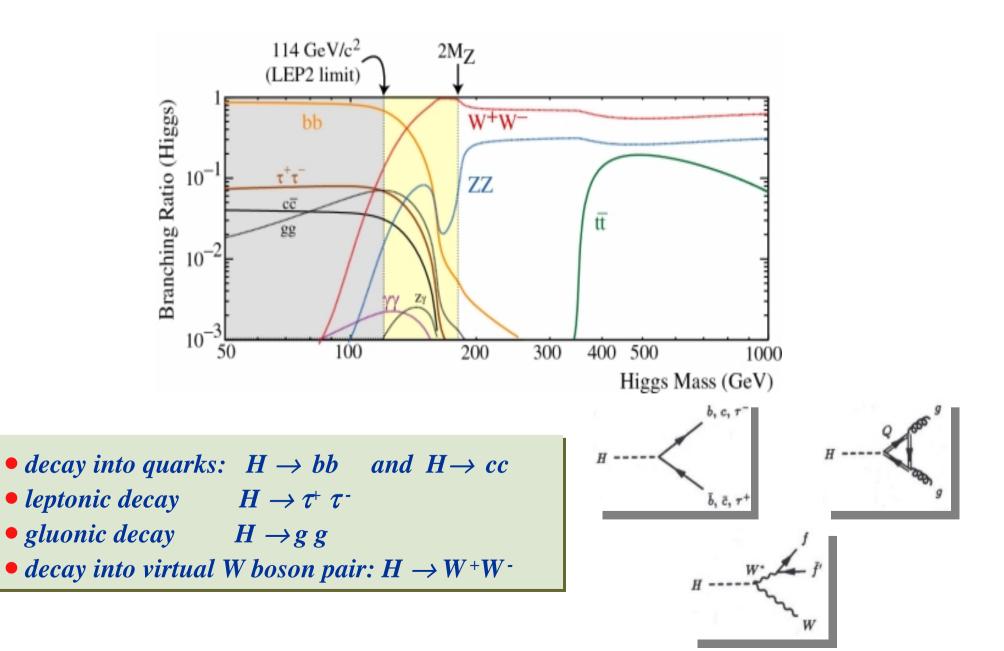
Search for the Higgs boson at LHC by using Genetic Algorithms


- Optimization of discriminant functions
- Optimization of Neural weights
- Hyperplans search
- Hypersurfaces search

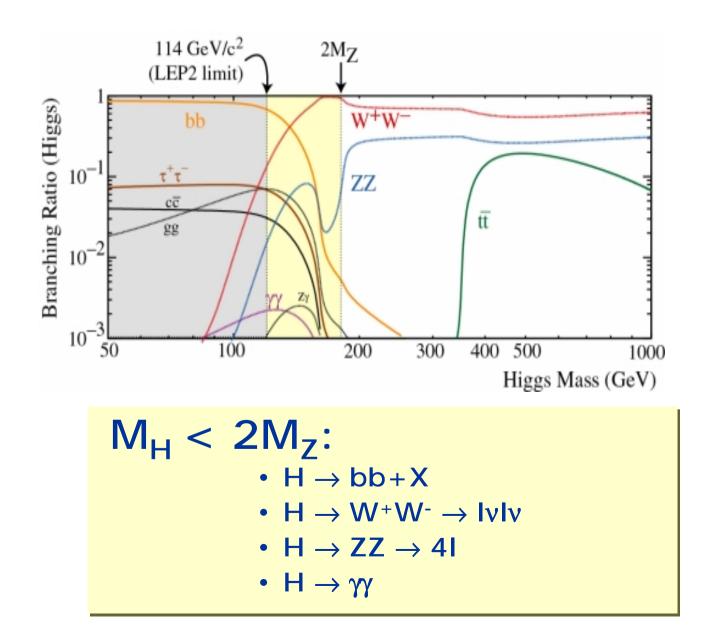
Conclusion


Introduction

Introduction Higgs production at LHC



Several mechanisms contribute to the production of SM Higgs boson in proton collisions


• The dominant mechanism is the gluon fusion process, $gg \rightarrow H$

Introduction Decay Modes

Introduction Main discovery modes

$H \rightarrow W^+W^- \rightarrow II_Vv$

• The decay channel chosen:

 $H \rightarrow W^+W^- \rightarrow e^+\mu \nu\nu, \mu^+e^-\nu\nu, e^+e^-\nu\nu, \mu^+\mu\nu\nu.$

• Signature:

Two charged oppositely leptons with large transverse momentum P_T.
 Two energetic jets in the forward detectors.

• Large missing transverse momentum P'_T

• Main background:

- *tt production: with tt* \rightarrow *WbWb* \rightarrow *lvj lvj*
- QCD W+W-+jets production
- Electroweak WWjj

WW jj (EW

$H \rightarrow W^+W^- \rightarrow H_V v$

Main Variables

• $\Delta \eta_{ll}$, $\Delta \phi_{ll}$: the pseudo-rapidity and the azimuthal angle differences between the two leptons

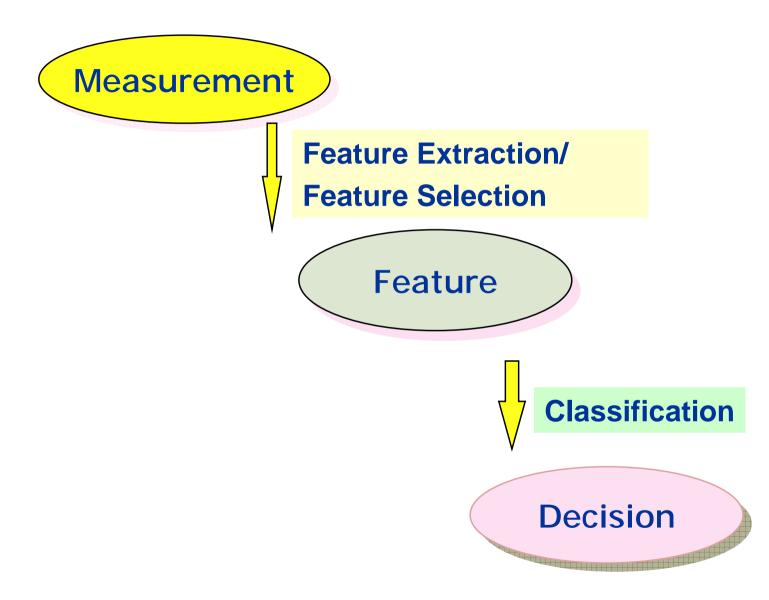
• $\Delta \eta_{jj}$, $\Delta \phi_{jj}$: the pseudo-rapidity and the azimuthal angle differences between the two jets

 ${}^{\bullet}M_{ll}$, M_{jj} : the invariant mass of the two leptons and jets,

• $M_{nm}(n,m = 1,2,3)$ some rapidity weighted transverse momentum

$$M_{nm} = \sum_{i \in event} \eta_i^n \cdot p_{iT}^m$$
 $n, m = 1, 2, 3, ...$

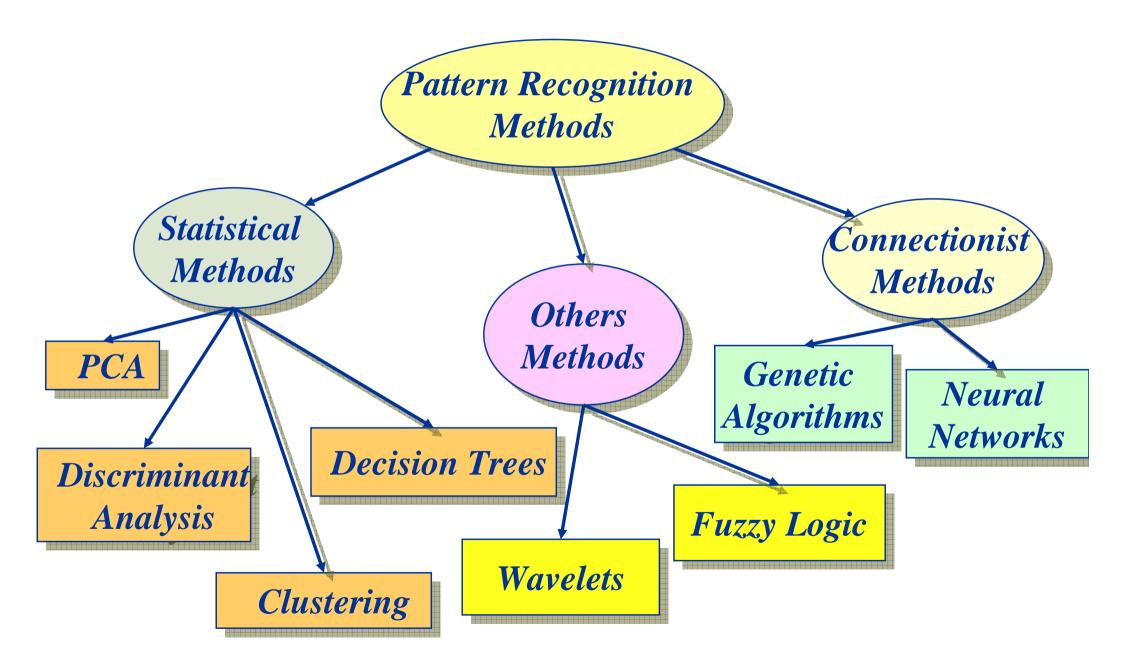
 η_i rapidity of the leptons or jets, p_{iT} their transverse momentums.


M. Mjahed

ACAT 05, DESY, Zeuthen, 26/05/2005

Genetic Algorithms

Pattern Recognition



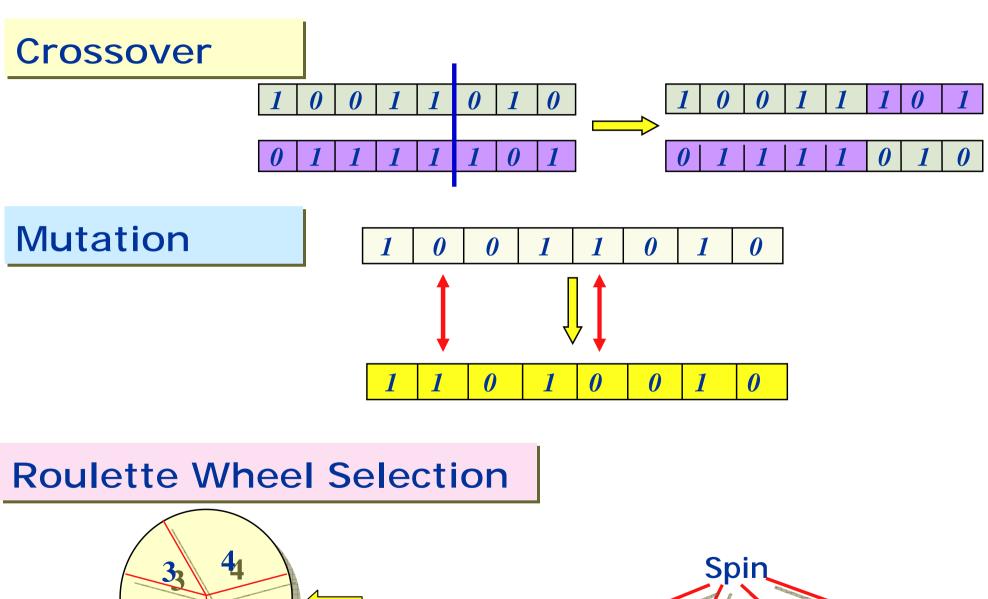
10

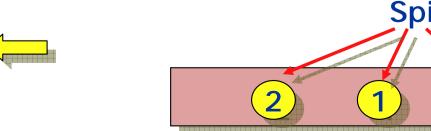
M. Mjahed

ACAT 05, DESY, Zeuthen, 26/05/2005

Pattern Recognition Methods

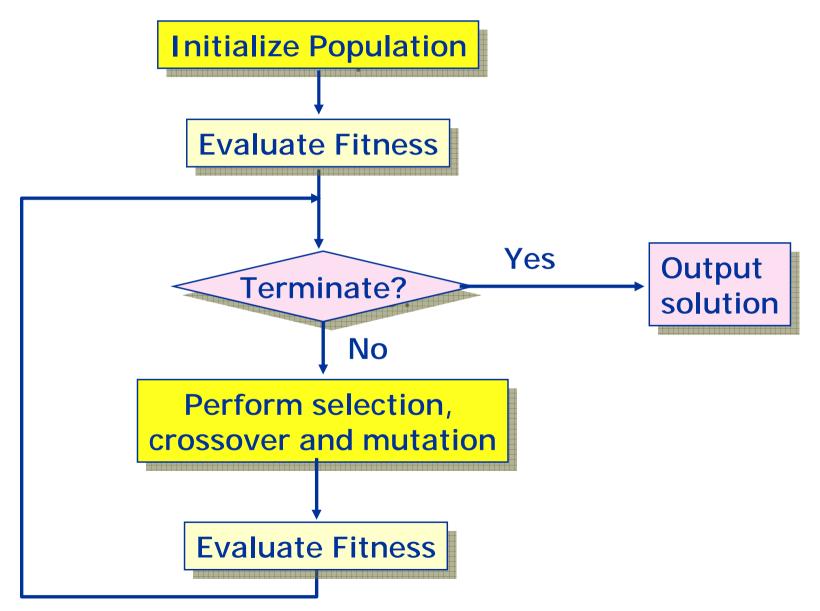
Genetic Algorithms


- Based on Darwin's theory of "survival of the fittest" Living organisms reproduce, individuals evolve/ mutate, individuals survive or die based on fitness
- The output of a genetic algorithm is the set of "fittest solutions" that will survive in a particular environment
- The input is an initial set of possible solutions
- The process
 - Produce the next generation (by a cross-over function)
 - Evolve solutions (by a mutation function)
 - Discard weak solutions (based on a fitness function)


Genetic Algorithms

Preparation:

- Define an encoding to represent solutions (i. e., use a character sequence to represent a class)
- Create possible initial solutions (and encode them as strings)
- Perform the 3 genetic functions to operate on a cluster encoding: Crossover, Mutate, Fitness Test
- Why Genetic Algorithms (GAs) ?
 - Many real life problems cannot be solved in polynomial amount of time using deterministic algorithm
 - Sometimes near optimal solutions that can be generated quickly are more desirable than optimal solutions which require huge amount of time
 - Problems can be modeled as an optimization one.


Genetic Functions

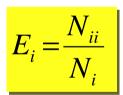
 2_2

GA Flowchart

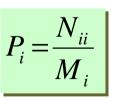
M. Mjahed

ACAT 05, DESY, Zeuthen, 26/05/2005

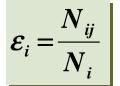
GAs for Pattern Classification


- Optimization of discriminant functions
- Optimization of Neural weights
- Hyperplans search
- Hypersurfaces search

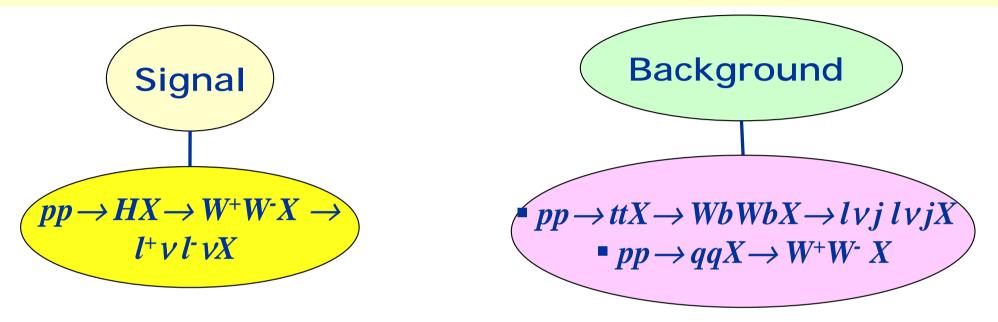
Efficiency and Purity of Classification


• Validation

Test	Classification		
Events	C_1 C_2		
C ₁ : N ₁	N ₁₁	N ₁₂	
$C_2: N_2$	N ₂₁	N ₂₂	
Total	M ₁	M ₂	


• Efficiency for C_i classification

• Purity for C_i events



• *Misclassification rate for C_i or Error*

Search for the Higgs boson at LHC by using Genetic Algorithms

Search for the Higgs boson at LHC by using Genetic Algorithms

- Events generated by the LUND MC PYTHIA 6.1 at $\sqrt{s} = 14 \text{ TeV}$
- $M_H = 115 150 \ GeV/c^2$
- 10000 Higgs events and 10000 Background events are used

Research of discriminating variables

Variables

• $\Delta \eta_{ll}$, $\Delta \phi_{ll}$: the pseudo-rapidity and the azimuthal angle differences between the two leptons

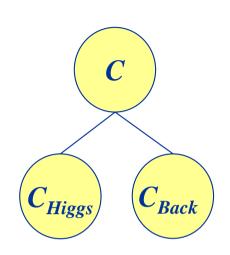
• M_{ll} : the invariant mass of the two leptons

• $\Delta \eta_{jj}$, $\Delta \phi_{jj}$: the pseudo-rapidity and the azimuthal angle differences between the two jets

• *M_{jj}*: the invariant mass of the two jets

• Rapidity-impulsion weighted Moments M_{nm} : (n=1, ..., 6) η_i rapidity: $\eta_i = \frac{1}{2} \cdot Log(\frac{E_i + p_{i/l}}{E_i - p_{i/l}})$

 $\Delta \eta_{lb} \Delta \phi_{lb} \Delta \eta_{jj}, \Delta \phi_{jj}, M_{ll}, M_{jj}, M_{1l}, M_{2l}, M_{3l}, M_{4l}$


Optimization of Discriminant Functions (1)

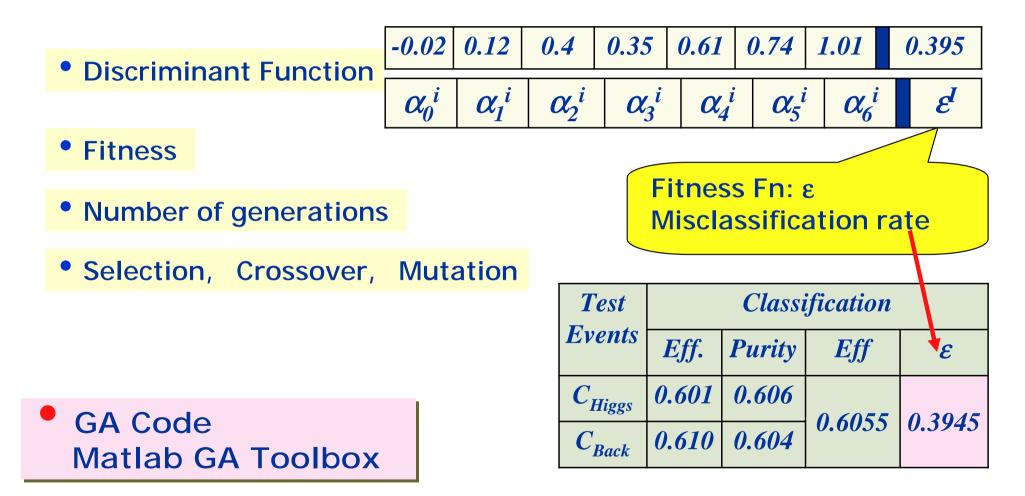
• Discriminant Analysis

• $F(x) = (g_{signal} - g_{back})^T V^{-1} x = \Sigma \alpha_i x_i$

• The most separating discriminant Function $F_{Higgs / Back}$ between the classes C_{Higgs} and C_{Back} is :

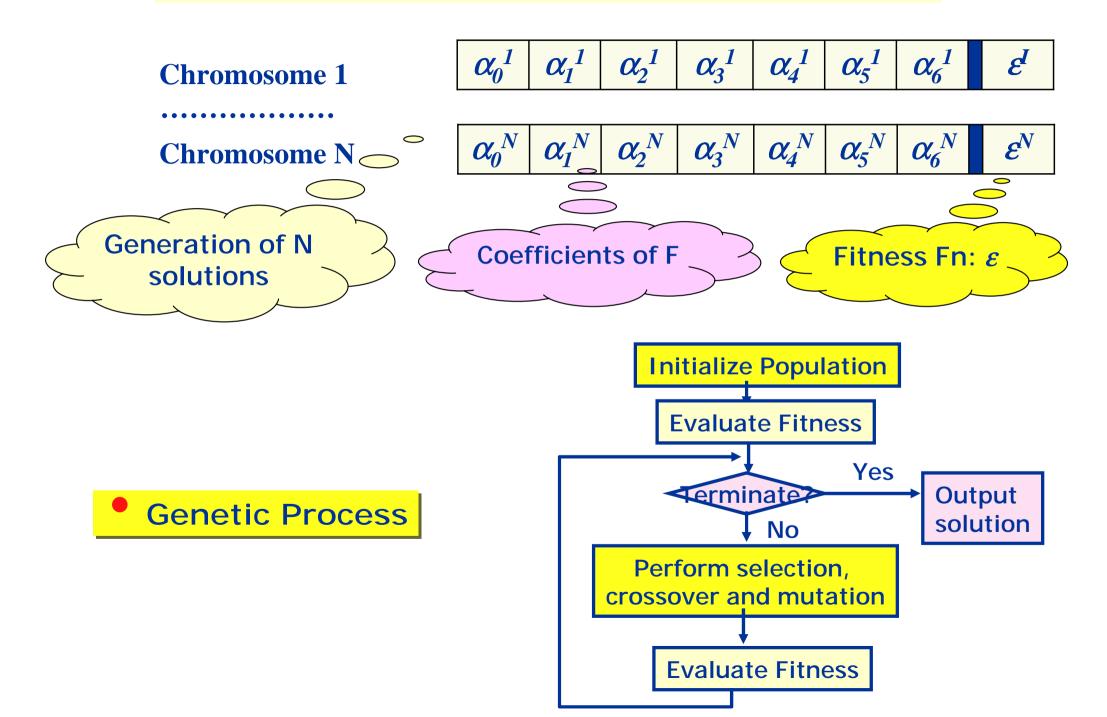
 $F_{Higgs / Back} = -0.02 + 0.12 \Delta \eta_{ll} + 0.4 \Delta \eta_{jj} + 0.35 M_{ll} + 0.61 M_{jj} + 0.74 M_{11} + 1.04 M_{21}$

• The classification of a test event x₀ is then obtained according to the condition:


if
$$F_{Higgs / Back}(x_o) \ge 0$$
 then $x_o \in C_{Higgs}$ else $x_o \in C_{Back}$

Classification of test events

Test	Classification		
events	Efficiency	Purity	
C _{Higgs}	0.601	0.606	
C _{Back}	0.610	0.604	


Optimization of Discriminant Functions (2)

GA Parameters

Optimization of Discriminant Functions (3)

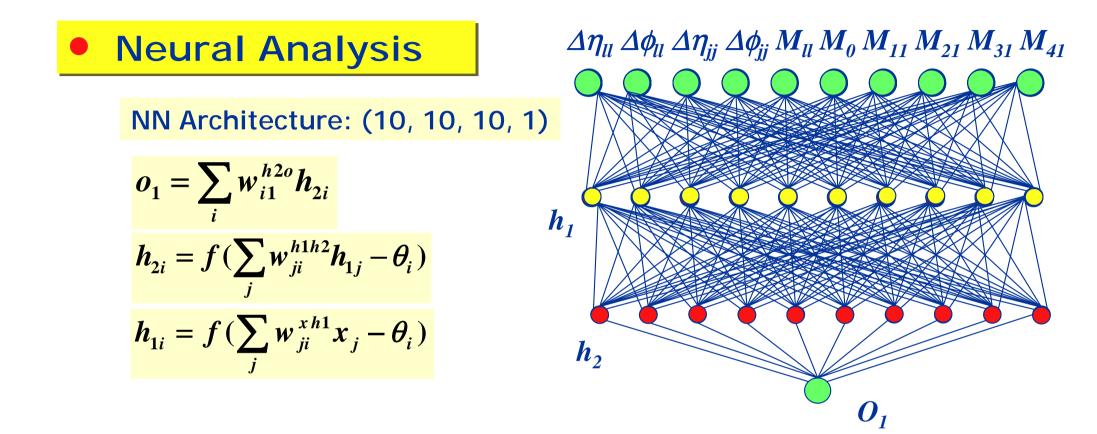
Optimization of Discriminant Functions (4)

Optimization Results

Number of generations =10000 CPU Time: 120 s

• Optimal Disc. Fn

-0.02 0.12 0.4 0.35 0.61 0.74 1.01


Test	Classification			
Events	Eff.	Purity	Eff	ε
C _{Higgs}	0.652	0.649	0.65	0.25
C _{Back}	0.648	0.650		0.35

M. Mjahed

ACAT 05, DESY, Zeuthen, 26/05/2005

Optimization of Neural Weights (1)

• Classification of test events

if
$$O_1(x) \ge 0.5$$
 then $x \in C_{Higgs}$ else $x \in C_{Back}$

T	est	Classification			
E	vts	Eff.	Pur.	Eff	Е
	liggs	0.654			
	Back	0.669	0.659	0.661	0.338

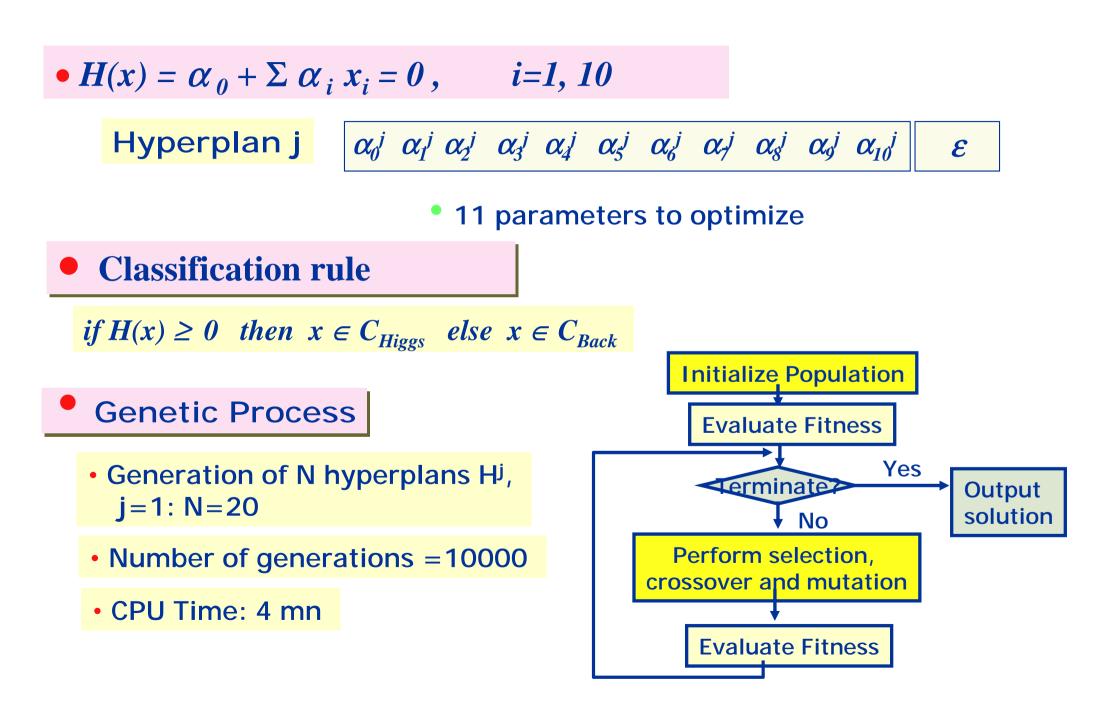
Optimization of Neural Weights (2)

GA Parameters

Connection Weights + thresholds

$W_{ij}^{xh1}, \theta_i^{h1}$	$W_{ij}^{h1h2}, \ heta_i^{h2}$	$W^{\ h2o}_{ij}$	E
100 +10	100 + 10	10	E

Total number of parameters to be optimized : 230


Fitness: Misclassification rate, ε

Optimization Results

Number of generations = 1000 CPU Time: 6 mn

Test	(Classification		
Evts	Eff.	Pur.	Eff	Е
C _{Higgs}	0.691			
C _{Back}	0.699	0.693	0.695	0.305

Hyperplan search (1)

Hyperplan search (2)

Hyperplan search Results

• Classification of test events

Test	Classification			
Evts	Eff.	Pur.	Eff	Е
C _{Higgs}	0.661	0.655	0.656	0 2 4 4
C _{Back}	0.651	0.657	0.030	0.344

Same results than Discriminant functions optimization

Test	Classification			
Events	Eff.	Pur.	Eff	ε
C _{Higgs}	0.652	0.649	0.65	0.25
C _{Back}	0.648	0.650	0.65	0.35

Hypersurface search (1)

•
$$S(x) = \alpha_0 + \sum_{i=1}^{10} \alpha_i x_i + \sum_{i=1}^{10} \beta_i x_i^2 + \sum_{i=1}^{10} \gamma_i x_i^3$$

Hypersurface j $\alpha_r^j i=0:10$ $\beta_i^j i=1:10$ $\gamma_i^j i=1:10$ ε^j
• 31 parameters to optimize
• Classification rule
if $S(x) \ge 0$ then $x \in C_{Higgs}$ else $x \in C_{Back}$
• Genetic Process
• Generation of N hyperplans SJ,
 $j=1: N=20$
• Number of generations = 10000
• CPU Time: 6 mn

Hypersurface search (2)

Hypersurface search Results

Classification of test events

Test	Classification			
Evts	Eff.	Pur.	Eff	Е
C _{Higgs}	0.689			0.200
C _{Back}	0.693	0.693	0.691	0.309

Same results as NN weights optimization

Test	Classification			
Evts	Eff.	Pur.	Eff	ε
C _{Higgs}	0.691	0.696	0.695	0 205
C _{Back}	0.699	0.693		0.305

M. Mjahed

ACAT 05, DESY, Zeuthen, 26/05/2005

Conclusion

С

Higg

Back

• Methods

- Importance of Pattern Recognition Methods
- The improvement of an any identification is subjected to the multiplication of multidimensional effect offered by PR methods and the discriminating power of the proposed variables.
- Genetic Algorithms Method allows to minimize the classification error and to improve efficiencies and purities of classifications.
- The performances are in average 3 to 5 % higher than those obtained with other methods.
- Discriminant Functions Optimization : comparative to hyperplan search approach
- Neural Weights Optimization : comparative to hypersurface search approach

Conclusion (continued)

Variables

Characterisation of Higgs Boson events: Other variables should be examined

Physics Processes

Other processes should be considered

Detector effects should be added to the simulated events