Optimization of Lattice QCD codes

for the AMD Opteron processor

Miho Koma (DESY Hamburg)
ACAT2005, DESY Zeuthen, 26 May 2005

> We report the current status of the new Opteron cluster at DESY
Hamburg, including benchmarks.

> We discuss details of the optimization using SSE/SSE2 instructions
and the effective use of prefetch instructions.

[Reference: AMD technical documents # 23932, # 25112]

M. Koma (DESY)

> Lattice QCD simulations

Lattice QCD simulation: Evaluate path integral on a discrete space-time lattice
with the Monte Carlo method.

(0) = % / [dU.O(det@)™r e3¢
Z,p

“Hot spot” of the numerical calculation:

—> Dirac Operator Q = v5(D +m)
= Qv is a combination of “Complex 3x3 matrix times complex vector,’
only nearest neighbor interactions.

—> Linear algebra for Spinor Field
= A spinor field is a vector with 24 x L* components.
= Major part of the linear algebra is a local operation.

involves

= Easy parallelization
= Suitable for PC cluster

M. Koma (DESY)

> Aim of this work

Develop optimized codes of “Dirac operator” and “Linear algebra”
for the AMD Opteron processor.

Step 1:Single processor version (THIS TALK)

Step 2:Parallel processing version
= QOur strategy of the optimization can be common to other processors.

Starting point:

Original C code by Giusti, Holbling, Liischer, Wittig

Optimized for Intel Pentium 4 (Xeon) processor with SIMD instructions
SIMD: Single-Instruction Multiple data

SSE: Streaming SIMD Extensions instruction sets

SSE register: 128-bit long register for the SSE instruction.

AMD Opteron Intel Xeon
Clock Speed 2.4 GHz 1.7 GHz
Cache L1 (64 kbyte) / L2 (1 Mbyte) L2 (512 kbyte)
of SSE/SSE2 Registers 16* 8
*No SSE3

M. Koma (DESY)

> SIMD instructions

A SSE instruction can process packed data (4 floating point numbers / 2 double
numbers) on SSE registers. (<= Suitable for the lattice simulation)

xmmO : a b C d
Example: addps %%xmm1, %%xmm0 xmml : Al B | C|D
xmmoO : at+A | b+B | c+C | d4D

= Max. performance = 4 x CPU clock speed = 9.6 GFlops (single)

We embed the instructions to C codes by defining macro using “Inline assembly”

#define _add(inl,in2,out) \

__asm__ __volatile__ ("movaps %1, %%AxmmO \n\t" \ I Load data
"movaps %2, hhkxmml \n\t" \
"addps %%xmml, %%xmmO \n\t" \ ! Calculation
"movaps %%xmmO, %0" \ | Save data
:"=m" (out) \
:'"m" (inl), \
" (11’12))

M. Koma (DESY)

> Optimization

Optimization = 1) Reducing the number of instruction = processor independent
2) Hiding the LATENCY time of the processor = processor dependent

Origin of latency: The data is unavailable on time

—> Latency of the SSE instruction itself

—> Mismatch between the processor speed and the data transfer speed
(memory < SSE registers)

M. Koma (DESY)

> Optimization

Optimization = 1) Reducing the number of instruction = processor independent
2) Hiding the LATENCY time of the processor = processor dependent

Origin of latency: The data is unavailable on time
—> Latency of the SSE instruction itself

Each instruction needs several processor cycles to finish the operation.

exX.
a = Db + Cc kkxkkxx a = Db + Cc kkxxkxxk
d=e+ f k 5k % >k d=a+ e sk 3k ok >k ok
g=h+1i sk 3k ok kK g=d+h sk 3k ok ok k

CPU has to wait until the previous instruction is finished if the calculations are dependent.

M. Koma (DESY)

> Optimization

Hiding the latency due to the SSE instruction

—> Use lower latency instructions
if possible
ex. for sign flip
mulps (5 cycle) X
xorps (3 cycle) O

M. Koma (DESY)

> Optimization

Hiding the latency due to the SSE instruction

—> Use lower latency instructions
if possible
ex. for sign flip
mulps (5 cycle) X
xorps (3 cycle) O

Perform independent opera-
tions using several SSE regis-
ters

Make use of 16 SSE registers
on Opteron

With 2 SSE registers
%1, %hxmmO
52, %hxmml

movaps
movaps
addps

movaps

%/xmmO, %0

With 4 SSE registers

movaps
movaps
movaps
movaps
addps

addps

movaps
movaps

h2,
%3,
4,
55,
%oloxmml ,
%/hxmm3,
%7/xmmO ,
%oloxmm?2 ,

% /oxmmO
%o/oxmm1
% /oxmm2
% /oxmm3
%/xmmO :
%/hxmm?2

%0
Al

;%% 9 cycles / 4 numbers
: k3

%hxmml, %%xmmO :

%k >k %k %k >k
* %

;%% 11 cycles / 8 numbers
k3

* %k
* %k
% >k %k >k >k
*k %k Xk *k Xk
* %

M. Koma (DESY)

> Optimization

Hiding the latency due to the data transfer speed

40 Gbyte/sec___CPU 2.4GHz

SSE Register
—i— 128-bit x 16

~3 Gbyte/sec

Memory

/\/\/‘
l/\/\/‘

M. Koma (DESY)

> Optimization

Hiding the latency due to the data transfer speed

—> PREFETCH data to cache 40 Gbyte/sec___CPU 2.4GHz
SSE Register
e The data transfer speed between the cache and _ 4, Gbyte/sec 128-bit x 16
the register is fast enough (2 cycles / 128 bit). %] Cache|
e A PREFETCH instruction reads one cache line 64 kbyte
(=64 byte) from memory into the Level 1 |2 Cache
cache. 1024 kbyte

e Data transfer is processed in back ground.

8 PREFETCH instructions can be “in flight” at ~ 3 Gbyte/sec
a time. Memory

e The optimal amount of data for each “for” loop BT
> 1 cache line |/\/\/‘

Important parameter — Prefetch distance

M. Koma (DESY)

> Prefetch distance

Prefetch distance: How far ahead to prefetch
Prefetch distance should be long enough so that the data is in the cache by the
time it is needed.

For Dirac Operator QQ:
Prefetch distance dependence of the macro for 3x3 matrix times vector

Computation time on 123 - 24 lattice (sec/50 operations)
prefetch dist. |0 (no) 1 2 3 4 5 6
16 SSE registers | 2.61 2.13 155 1.16 1.49 1.15 1.18
8 SSE registers | 2.65 2.16 1.54 1.25 152 1.26 1.27

e Effective use of prefetch can improve performance more than by a factor of 2.

e The 16 registers version is faster than the 8 registers version only when the
prefetch distance is long enough.

e Short prefetch distance — x. Long prefetch distance — A.

M. Koma (DESY)

> Before and after optimization

Summary of the modification:
e Use 16 SSE registers if necessary to hide instruction latency

e Adjust prefetch distance

Bench mark calculations:

—> Dirac Operator 1 = Q¢ : combination of Complex 3x3 matrix times complex
vector per spinor component

—> Scalar product of two spinors (¥, @)
—> Norm square (1, 1))
—> Add-assign ¥ = 9 + c¢
e single precision (32-bit, SSE) / double precision (64-bit, SSE2)

e ANSI-C / with SSE (original version for Xeon) / with SSE (new version)
e Lattice volume dependence: L=8, 12, 14, 16, 18, 20, 24

M. Koma (DESY)

> Before and after optimization

Dirac Operator ¥ = Q¢ :

(Single, 32-bit) (Double, 64-bit)
3000 T T : : . : : 3000 T T T T T T T
- ¥ - 8 SSE for Xeon > - % - 8 SSE for Xeon
& 5 -8~ Without SSE i g 25001- _5- Without SSE -
o3 [T
S 2000f ____..] S - b ~ 2000} -
— R S ¥ %
= 2
O 1500 — £ 1500 —
B &
[;\HH/B’E_(i*ﬁe'\-e/e/e—e\o
& 1000 y B 10001 eqowe T T <
§ @ B\B\H——‘E\s———(]
500 - § 500} i
0 | | | | | | | 0 | | | | | | |
8 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24
L L

—> For single precision version the code with SSE is twice faster than that without
SSE, while the improvement is 20 % for double precision version.

—> L2 cache improves the performance when the source spinor and gauge fields
((72 + 96) *x L* byte for single precision) can fit into L2 cache.

M. Koma (DESY)

> Before and after optimization

Linear algebra (Single, 32-bit)

Y=9+cod (¥,) (¥,)
3000 —— 3000 —— 7000 ——
—-6— 16 SSE for Opteron —-6— 16 SSE for Opteron —-6— 16 SSE for Opteron
-% - 8 SSE for Xeon 7 -%- 8 SSE for Xeon 7 - % - 8 SSE for Xeon
2500} —5- Without SSE S 25001 -5~ Without SSE g 6000 —5- Without SSE
% i)
5 =3 s
E v —_— N— 5000
2000} - 8 2000 o)
g ' =) ol
e}
) o) % 4000
> g Q. |
S 1500 5 1500, =
N—r c S
-g o1 ! izj/ 3000
1000 = 1000
@ ('g -g 2000
3 & %
500 § 500 ? 1000
0 | | | | | | | 0 | | | | | | | 0 | | | | | | |
8 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24 8 10 12 14 16 18 20 22 24
L L L

—> Large L2 cache improves the performance of norm square (6.4 GFlops).

—> 19 =1 +cé and (¢, ¢) with 16 SSE registers are slower than that without SSE
at L = 8,16, 24.
= Conflict among the multiple prefetch requests ?

M. Koma (DESY)

> Prefetch (Bank) conflict

Prefetch conflict occurs in the linear algebra calculation when
—> the lattice size is (8 x n)*
—> two source spinor fields are loaded

This may happen due to coincidences in the bank structure of the memory system
and the data structure of the spinor field.

| ! 1 1

1 3

2 4

Bank conflict

M. Koma (DESY)

> Prefetch (Bank) conflict

Prefetch conflict occurs in the linear algebra calculation when
—> the lattice size is (8 x n)*
—> two source spinor fields are loaded

This may happen due to coincidences in the bank structure of the memory system
and the data structure of the spinor field.

! 1 1 1 1 1

1 3

2 4

Possible solution: Modify the data structure
Prefetch the second source far more ahead (8 / 2 = 4)

M. Koma (DESY)

> Prefetch (Bank) conflict

Linear algebra

b=1+cf

3000

2500

1500

Peak Speed (Mulc) (MFlops)

500

2000L,

1000 -

-6~ 16 SSE (2 prefetch dist.)
—O - 16 SSE (1 prefetch dist.)
-¥- 8 SSE for Xeon

-8~ Without SSE

—> Adjustment of the prefetch distance

10

12 14 16 18 20 22 24

Peak Speed (Spinor product) (MFlops)

3000

(¥, 9)

2500

-6~ 16 SSE (2 prefetch dist.)
—O - 16 SSE (1 prefetch dist.)
-¥%- 8 SSE for Xeon

-8~ Without SSE

10 12 14 16 18 20 22 24

cures of the slowing down.

M. Koma (DESY)

> Pentium Xeon vs. AMD Opteron processor

Peak speed (MFlops)

Opteron Xeon | ratio
CPU 2.4 GHz 1.7 GHz | 1.41
Y = Q¢ (single, L=12) 2037 1421 1.43
¥ = Q¢ (double, L=12) 1131 796 1.42
(¥, ®) (single, L=16) 1370 617 2.22
(¢, ¢) (double, L=16) 661 353 1.87
(¢, ¢) (double, L=12) 1090 554 1.97

—> For ¥ = Q¢, the improvement is proportional to the ratio of the CPU clock

speed.

—> For linear algebra, we have more gain than expected from the clock speed.

= Cache size
= Data transfer speed

M. Koma (DESY)

> Summary

=

—

L4l

We discuss the optimization of the lattice QCD codes for the AMD Opteron
processor.

Tuning of the prefetch distance can drastically improve performance.
(more than by a factor of 2)

Bank conflict causes significant slowing down at certain lattice sizes, which
can be cured of by adopting two different prefetch distances.

The code optimized for the Xeon processor is not the fastest for the
Opteron processor. We have considerable gain by tuning prefetch
distance and by modifying SSE instructions.

Large cache effect is observed when the source field(s) can fit into L2 cache.
Parallel version of the codes should also be optimized.

The strategy of the optimization can be common to other processors.

M. Koma (DESY)

