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1 Introduction

• Many final particles ⇒ big number of graphs even for tree processes

φ3 model : (2E − 5)!! graphs, (E = # external particles)

• Faster algorithms

– Alpha

F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332;

F. Caravaglios and M. Moretti, Z. für PhysikC 74 (1997) 291.

– HERAC

A. Kanaki, C.G. Papadpouos, Comput. Phys. Commun. 132 (2000) 306.

– O’Mega

M. Moretti, T. Ohl and J. Reuter, hep-ph/0102195.

• Traditional calculations with Feynman graphs

⇒ sub-graphs are calculated repeatedly.
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• Basic idea

G

er

F(e)

GF0 GF1

1. Gather Feynman graphs with the same propagator e ⇒ GF(e).

2. Cut graphs at propagator e.

3. Calculate amplitudes for the sets of sub-graphs GF0 and GF1.

4. Multiply the propagator and the sub-amplitudes.

The number of graphs : |GF(e)| = |GF0| × |GF1|.
The amount of calculations : |GF(e)| = |GF0| + |GF1|.
– Over which propagators it should be summed up ?

– Double counting ?

⇒ need to classify Feynman graphs.

– Generation of GF0 and GF1 and then multiplication ⇒ generation of GF ?

– Factorize by edges or vertices ?
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• Model

We discuss in a simple model

– One scalar particle is included.

– n > 2 for n-point vertices.

No tadpole nor 2-point vertex. (⇒ effective vertices and propagators)

– At most one kind of n-point vertex for each n.

– Consider only tree graphs including at least one vertex.

• Terms

node : an external particle or a vertex.

edge : a connection between two edges.

root : a fixed external particle.
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2 Classification of tree Feynman graphs

• Decomposition of a graph G(E)

a a

G G0 1G

er r

G(E) = G0(E0) ¯e G1(E1).

– e : edge.

– E , E0, E1 : sets of external particles.

– E0 includes root r.

– E0 ∩ E1 = {ae} : ae is a new external particle appearing at e.

(We call ae the cut node of edge e).

– e and ae are determined by E0 or E1 using momentum conservation law.
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• D-number F (e) of edge e :

F (e) = |E0 − {ae}| = |E0| − 1,

1 ≤ F (e) < |E|.

– F (er) = 1 when er is adjacent to the root.

– For given k (1 < k < |E|), no edge may satisfy F (e) = k.

– More than one edges may have the same value of d-number.
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• Lemma 2.1 For k ≤ |E|/2, there is at most one edge e

such that F (e) = k.
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Proof

1. Assume that two different edges e1 and e2 have the same value of d-number F (e1) =

F (e2).

e
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r

2. Edge e2 cannot be on the path r – e1, since there are no tadpole nor 2-point

functions. Edge e1 cannot be on the path r – e2 by the same reason.

3. Decompose graph G in terms of e1 and e2:

G = G0(E0) ¯e1 G1(E1), r ∈ E0,

G0 = H0(E ′
0) ¯e2 H1(E ′

1), r ∈ E ′
0.

then ( E0 etc. includes cut nodes)

k = F (e1) = |E0| − 1 = |E ′
0| + |E ′

1| − 3,

= F (e2) = |E| − |E ′
1| + 1.
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We obtain

2k = |E| + |E ′
0| − 2.

|E ′
0| ≥ 3 ⇒ 2k ≥ |E| + 1.

♦

• Central edge ec

– Definition :

F (ec) ≤ |E|/2, F (e) ≤ |E|/2 ⇒ F (e) ≤ F (ec).

– Central edge uniquely exists in a graph

⇐ the last lemma + F (er) = 1 (er is adjacent to the root).

• Classification without duplication :

GF(E) =
∑

e,F (e)≤|E|/2

GF(E , e),

GF(E , e) ∩ GF(E , e′) = ∅, for e 6= e′.

GF(E) : the set of all possible tree Feynman graphs

GF(E , e) : the set of all possible tree Feynman graphs with central edge e.
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• Classification in terms of an edge or a vertex ?

– Condition for GF(E , e) is not simple. ⇒ classification of generated of graphs ?

– Classification in terms of vertex ⇒ simpler condition. ⇒ generation of graphs ?

• Central vertex

– Define d-number F (v) to a node v :

F (v) =

{
0, for v is the root,

mine∈Ev F (e), otherwise,

Ev : the set of all edges adjacent to v.

– Central vertex vc : vertex satisfying F (vc) = F (ec) ≤ |E|/2.

– Central vertex is adjacent to ec at the far side from root r.

– Central vertex is uniquely determined in each graph.

r
vc

ec

– GF(E , f, d) : a set of graphs with central vertex vc with f = F (vc) and d = deg(vc).
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Lemma 2.2 The set of all the graphs GF(E) is decomposed by:

GF(E) =

⌊
|E|
2

⌋

⋃

f=1

⋃

d≥dmin

GF(E , f, d),

GF(E , f, d) ∩ GF(E , f ′, d′) = ∅, for f 6= f ′ or d 6= d′.
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3 Factorization of Feynman amplitudes

• Decomposition of graph G ∈ GF(E) in terms of a vertex vc.

– r : root of G

– e0, ..., ed−1 : edges adjacent to v (degree d).

– Decompose graph G in terms of {ei}.
– ai : cut node of ei.

G = V (d, a0, ..., ad−1) ¯e0 G0(E0) ¯e1 ... ¯ed−1 Gd−1(Ed−1), (1)

r ∈ G0

ai ∈ Ei for i = 0, ..., d − 1,

where V (d, a0, ..., ad−1) is a graph obtained by connecting vertex vc to ai (i =

0, ..., d − 1).

r
vc

e0

e1

ed-1G0

Gd-1

G1
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Lemma 3.1 In the decomposition (1) of G in terms of a vertex v, the necessary

and sufficient condition for v = vc is:

0 ≤ |E0| ≤ |E|
2

+ 1,

0 ≤ |Ek| <
|E|
2

+ 1, for k ≥ 1. (2)

Proof

– v = vc ⇒ condition (2):

|E|/2 ≥ F (ec) = F (e0) = |E0| − 1,

|E|/2 < F (ek) = |E| − |Ek| + 1.

– Condition (2) ⇒ v = vc

1. ec is not included in Gk, k ≥ 1

If e ∈ Gk ⇒ F (e) > F (ek) = |E| − |Ek| + 1 > |E|/2.

⇒ ec ∈ G0 or ec = e0.

2. ec cannot on the path r — a0 in G0

If e is on this path ⇒ F (e) < F (a0) = F (e0).
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3. Let e ∈ G0 be not on the path r — a0 in G0.

Decompose G0 in terms of e:

G0 = H0(E ′
0) ¯e H1(E ′

1), r ∈ E ′
0.

As r, a0, ae ∈ H0, |E ′
0| > 2 and |E ′

1| = |E0| − |E ′
0| + 2 < |E0|.

We obtain

F (e) = |E| − |E ′
1| + 1 > |E| − |E0| + 1 > |E|/2

⇒ e cannot be ec.

4. As the result, we get ec = e0.

♦
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• Standard decomposition

Decomposition of E into (E0, ..., Ed−1) which satisfies for f (0 < f ≤ |E|/2) and

d (dmin ≤ d) :

E =

d−1⋃

i=0

Ei,

Ei

⋂
Ej = ∅, for i 6= j,

r ∈ E0,

|E0| = f,

|Ei| <
|E|
2

, for i > 0,

where r is the root of E .

• Remove ambiguity in reordering {Ei} :

– Number the external particles from 0 to |E| − 1 .

– Introduce the following condition:

ei < ei+1 for ei = min{e|e ∈ Ei} and i > 0.

• E(f, d) : The set of all standard decomposition for given f and d.
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Lemma 3.2 Set of graphs GF(E , f, d) is decomposed as:

GF(E , f, d) =
⋃

{E0,...,Ed−1}∈E(f,d)

{V (d, a0, ..., ad−1)}

¯GF(E0 ∪ {a0}) ¯ ... ¯ GF(Ed−1 ∪ {ad−1}).

In this decomposition, there appear no duplicated graphs.

• The set of all tree Feynman graphs are constructed from sets of sub-graphs.

• A(GF(E)) : amplitude of the set of graphs GF(E).

• Algorithm

1. Sum up the result of step 2 for f = 1, ..., |E|/2, d = dmin, ....

2. Generate all the possible elements of E(f, d) and sum up the result of step 3.

3. Calculate momenta of (a0, ..., ad−1) and then A(V (v, a0, ..., ad−1)).

Multiply A(V ) and the results of step 4 for A(GF(Ei ∪ {ai})) with propagator ei

(i = 0, ..., d − 1).

4. Calculate A(GF(Ei

⋃
{ai})) recursively by step 1.
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• Comments

1. No need to generate Feynman graphs explicitly.

2. A(GF(E0

⋃
{a0})) can be factored out for common E0.

This factorization corresponds to the classification of graphs in terms of ec. This

optimization can be done by the code generator.

3. The same GF(Ei

⋃
{ai}) may still appear many times, it can be avoided by keeping

a table of pairs (E ,A(GF(E))).

r
vc

r
vc

4. This method corresponds to a choice of “keystones” which was proposed by O’Mega

group. It is shown that no double counting appears with our set of keystones.
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4 Performance of the algorithm

Performance in φ3 + φ4 theory

Comparison

• The numbers of operations in φ3 + φ4 theory are counted.

• This method is compared with traditional calculation method.

Comments:

• The acceleration ratio increases as the number of external particles increases.

• The number of additions of partial amplitudes shows the worst acceleration.

• In the realistic model, which includes several particles and vertices, partial amplitudes

are calculated for each helicity amplitudes.

• The cost of an addition of partial amplitudes increases as the number of external par-

ticles increases, while calculations of a vertex and a propagator are kept constant.
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Ne Nv Np Na Ng

M1 3 1 0 0 1
M0 3 1 0 0 1
R 3 1 0 0 1
M1 4 7 3 3 4
M0 4 7 3 3 4
R 4 1 1 1 1
M1 5 35 28 24 25
M0 5 65 40 24 25
R 5 1.86 1.43 1 1
M1 6 165 165 129 220
M0 6 755 535 219 220
R 6 4.58 3.24 1.70 1
M1 7 686 911 594 2485
M0 7 10605 8120 2484 2485
R 7 15.46 8.91 4.18 1
M1 8 3283 4781 2967 34300
M0 8 175035 140735 34299 34300
R 8 53.32 29.43 11.56 1
M1 9 12895 21932 12060 559405
M0 9 3322165 2762760 559404 559405
R 9 257.63 125.97 46.39 1
M1 10 57205 103137 54525 10525900
M0 10 71307775 60781875 10525899 10525900
R 10 1246.53 589.33 193.05 1
M1 11 217118 435811 210462 224449225
M0 11 1708131425 1483682200 224449224 224449225
R 11 7867.29 3404.41 1066.45 1

The numbers of operations are counted for:

Ne: the number of external particles,

Nv: the number of vertices to be calculated,

Np: the number of connections in terms of propagators,

Na: the number of additions of partial amplitudes,

Ng: the number of corresponding Feynman graphs.

These numbers are compared with:

M1: this method,

M0: traditional calculation of Feynman graphs,

R: ratio M0/M1 of acceleration.

Table 1: The number of operations in φ3 + φ4 theory
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Performance in the standard model

• Fortran code generator grcft

– A new component of GRACE.

– Based on CHANEL library (vertices and propagators).

– Common kinematics library with GRACE.

– Direct generation of Fortran code form process definition.

• Performance test:

– Compare with traditional GRACE

– Numerical calculation at fixed phase space points.

• Electro-weak theory (no colored particle)

Process # graphs # lines CPU-time
GRACE grcft (ratio)

e+e− ⇒ (e+e−)2 654 60933 21909 3.60
e+e− ⇒ (e+e−)3 145128 16253671 150219 83.70
e+e− ⇒ e+e−µ+µ−τ+τ− 12094 1368735 41648 15.14
e+e− ⇒ e+e−µ+µ−τ+τ−γ 117680 14923326 101629 142.86
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• Color factor

– Traditional method : coefficients of color base for each graph.

– This method : recursive summation of sub-graphs.

⇒ color factors for sub-graphs.

– Addition and multiplication of sub-amplitudes with color factor.

• Method

– Amplitudes A1 and A2 of sub-graphs.

– Color bases B
(1)
i and B

(2)
i

– Coefficients a
(1)
i and a

(2)
i

A1 =
∑

i

a
(1)
i B

(1)
i ,

A2 =
∑

i

a
(2)
i B

(2)
i .

– Addition : let B
(1)
i = B

(2)
i = Bi

A1 + A2 =
∑

i

(a
(1)
i + a

(2)
i )Bi.
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– Multiplication : multiplication table {ei,j,k} of color bases

B
(1)
i B

(2)
j =

∑

k

ei,j,kBk.

Bk : color bases of multiplied sub-amplitude.

A1A2 =
∑

i,j

a
(1)
i a

(2)
j B

(1)
i B

(2)
j

=
∑

k

∑

i,j

a
(1)
i a

(2)
j ei,j,kBk.

• FORTRAN code generation

– Multiplication table is prepared in the code generator.

– Coefficients are calculated in FORTRAN code.

ak =
∑

i,j

a
(1)
i a

(2)
j ei,j,k.
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• Performance
process # graphs # of lines CPU-time

GRACE grcft (ratio)
uū ⇒ 5g 1240 310053 171944 1.07
uū ⇒ uūcc̄tt̄ 200 28329 26375 0.81
uū ⇒ uūcc̄tt̄g 2658 386977 76459 1.16
uū ⇒ uūcc̄gg 1454 301646 55475 1.10
uū ⇒ uūcc̄ggg 19808 3353808 431866 1.32
gg ⇒ gggg 220 126865 114486 1.09
gg ⇒ ggggg 2485 730198 3862290 0.032

• Overhead of this method is large. ⇒ needs improvement.
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5 Summary

• Classification of tree Feynman graphs without duplication.

• Factorized calculation of Feynman amplitudes.

• Good acceleration for electro-weak theory.

• Overhead of color factor is large ⇒ need improvement.

• This method corresponds to a choice of “keystones” proposed by O’Mega group.
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