Factorization Method of Tree Feynman Amplitudes

Toshiaki KANEKO

2005/5/26 at ACAT 2005

Contents

1 Introduction 2
2 Classification of tree Feynman graphs 5
3 Factorization of Feynman amplitudes 11
4 Performance of the algorithm 17
5 Summary 23

1 Introduction

- Many final particles \Rightarrow big number of graphs even for tree processes ϕ^{3} model : $(2 E-5)!!$ graphs, $(E=\#$ external particles $)$
- Faster algorithms
- Alpha
F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332;
F. Caravaglios and M. Moretti, Z. für PhysikC 74 (1997) 291.
- HERAC
A. Kanaki, C.G. Papadpouos, Comput. Phys. Commun. 132 (2000) 306.
- O'Mega
M. Moretti, T. Ohl and J. Reuter, hep-ph/0102195.
- Traditional calculations with Feynman graphs
\Rightarrow sub-graphs are calculated repeatedly.
- Basic idea

1. Gather Feynman graphs with the same propagator $e \Rightarrow \mathcal{G}_{\mathcal{F}}(e)$.
2. Cut graphs at propagator e.
3. Calculate amplitudes for the sets of sub-graphs $\mathcal{G}_{\mathcal{F} 0}$ and $\mathcal{G}_{\mathcal{F}_{1}}$.
4. Multiply the propagator and the sub-amplitudes.

The number of graphs $\quad:\left|\mathcal{G}_{\mathcal{F}}(e)\right|=\left|\mathcal{G}_{\mathcal{F}_{0}}\right| \times\left|\mathcal{G}_{\mathcal{F}_{1}}\right|$.
The amount of calculations : $\left|\mathcal{G}_{\mathcal{F}}(e)\right|=\left|\mathcal{G}_{\mathcal{F}_{0}}\right|+\left|\mathcal{G}_{\mathcal{F}}\right|$.

- Over which propagators it should be summed up ?
- Double counting ?
\Rightarrow need to classify Feynman graphs.
- Generation of $\mathcal{G}_{\mathcal{F}_{0}}$ and $\mathcal{G}_{\mathcal{F}_{1}}$ and then multiplication \Rightarrow generation of $\mathcal{G}_{\mathcal{F}}$?
- Factorize by edges or vertices?
- Model

We discuss in a simple model

- One scalar particle is included.
$-n>2$ for n-point vertices.
No tadpole nor 2-point vertex. (\Rightarrow effective vertices and propagators)
- At most one kind of n-point vertex for each n.
- Consider only tree graphs including at least one vertex.
- Terms
node : an external particle or a vertex.
edge : a connection between two edges.
root : a fixed external particle.

2 Classification of tree Feynman graphs

- Decomposition of a graph $G(\mathcal{E})$

$$
G(\mathcal{E})=G_{0}\left(\mathcal{E}_{0}\right) \odot_{e} G_{1}\left(\mathcal{E}_{1}\right)
$$

$-e$: edge.
$-\mathcal{E}, \mathcal{E}_{0}, \mathcal{E}_{1}$: sets of external particles.
$-\mathcal{E}_{0}$ includes root r.
$-\mathcal{E}_{0} \cap \mathcal{E}_{1}=\left\{a_{e}\right\}: a_{e}$ is a new external particle appearing at e. (We call a_{e} the cut node of edge e).
$-e$ and a_{e} are determined by \mathcal{E}_{0} or \mathcal{E}_{1} using momentum conservation law.

- D-number $F(e)$ of edge e :

$$
\begin{aligned}
F(e) & =\left|\mathcal{E}_{0}-\left\{a_{e}\right\}\right|=\left|\mathcal{E}_{0}\right|-1 \\
1 & \leq F(e)<|\mathcal{E}|
\end{aligned}
$$

$-F\left(e_{r}\right)=1$ when e_{r} is adjacent to the root.

- For given $k \quad(1<k<|\mathcal{E}|)$, no edge may satisfy $F(e)=k$.
- More than one edges may have the same value of d-number.

- Lemma 2.1 For $k \leq|\mathcal{E}| / 2$, there is at most one edge e such that $F(e)=k$.

Proof

1. Assume that two different edges e_{1} and e_{2} have the same value of d-number $F\left(e_{1}\right)=$ $F\left(e_{2}\right)$.

2. Edge e_{2} cannot be on the path $r-e_{1}$, since there are no tadpole nor 2-point functions. Edge e_{1} cannot be on the path $r-e_{2}$ by the same reason.
3. Decompose graph G in terms of e_{1} and e_{2} :

$$
\begin{aligned}
G & =G_{0}\left(\mathcal{E}_{0}\right) \odot_{e_{1}} G_{1}\left(\mathcal{E}_{1}\right), & & r \in \mathcal{E}_{0}, \\
G_{0} & =H_{0}\left(\mathcal{E}_{0}^{\prime}\right) \odot_{e_{2}} H_{1}\left(\mathcal{E}_{1}^{\prime}\right), & & r \in \mathcal{E}_{0}^{\prime} .
\end{aligned}
$$

then (\mathcal{E}_{0} etc. includes cut nodes)

$$
\begin{aligned}
k & =F\left(e_{1}\right)=\left|\mathcal{E}_{0}\right|-1=\left|\mathcal{E}_{0}^{\prime}\right|+\left|\mathcal{E}_{1}^{\prime}\right|-3, \\
& =F\left(e_{2}\right)=|\mathcal{E}|-\left|\mathcal{E}_{1}^{\prime}\right|+1 .
\end{aligned}
$$

We obtain

$$
2 k=|\mathcal{E}|+\left|\mathcal{E}_{0}^{\prime}\right|-2
$$

$$
\left|\mathcal{E}_{0}^{\prime}\right| \geq 3 \Rightarrow 2 k \geq|\mathcal{E}|+1 .
$$

- Central edge e_{c}
- Definition :

$$
F\left(e_{c}\right) \leq|\mathcal{E}| / 2, \quad F(e) \leq|\mathcal{E}| / 2 \Rightarrow F(e) \leq F\left(e_{c}\right)
$$

- Central edge uniquely exists in a graph \Leftarrow the last lemma $+F\left(e_{r}\right)=1$ (e_{r} is adjacent to the root $)$.
- Classification without duplication :

$$
\begin{aligned}
\mathcal{G}_{\mathcal{F}}(\mathcal{E}) & =\sum_{e, F(e) \leq|\mathcal{E}| / 2} \mathcal{G}_{\mathcal{F}}(\mathcal{E}, e), \\
\mathcal{G}_{\mathcal{F}}(\mathcal{E}, e) & \cap \mathcal{G}_{\mathcal{F}}\left(\mathcal{E}, e^{\prime}\right)=\emptyset, \quad \text { for } e \neq e^{\prime} .
\end{aligned}
$$

$\mathcal{G}_{\mathcal{F}}(\mathcal{E})$: the set of all possible tree Feynman graphs
$\mathcal{G}_{\mathcal{F}}(\mathcal{E}, e)$: the set of all possible tree Feynman graphs with central edge e.

- Classification in terms of an edge or a vertex ?
- Condition for $\mathcal{G}_{\mathcal{F}}(\mathcal{E}, e)$ is not simple. \Rightarrow classification of generated of graphs ?
- Classification in terms of vertex \Rightarrow simpler condition. \Rightarrow generation of graphs ?
- Central vertex
- Define d-number $F(v)$ to a node v :

$$
\begin{aligned}
F(v) & = \begin{cases}0, & \text { for } v \text { is the root }, \\
\min _{e \in E_{v}} F(e), & \text { otherwise }\end{cases} \\
E_{v} & : \text { the set of all edges adjacent to } v .
\end{aligned}
$$

- Central vertex v_{c} : vertex satisfying $F\left(v_{c}\right)=F\left(e_{c}\right) \leq|\mathcal{E}| / 2$.
- Central vertex is adjacent to e_{c} at the far side from root r.
- Central vertex is uniquely determined in each graph.

$-\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d)$: a set of graphs with central vertex v_{c} with $f=F\left(v_{c}\right)$ and $d=\operatorname{deg}\left(v_{c}\right)$.

Lemma 2.2 The set of all the graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E})$ is decomposed by:

$$
\begin{aligned}
\mathcal{G}_{\mathcal{F}}(\mathcal{E}) & =\bigcup_{f=1}^{\left\lfloor\frac{|\mathcal{E}|}{2}\right\rfloor} \bigcup_{d \geq d_{\text {min }}} \mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d) \\
\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d) \cap \mathcal{G}_{\mathcal{F}}\left(\mathcal{E}, f^{\prime}, d^{\prime}\right) & =\emptyset, \quad \text { for } f \neq f^{\prime} \text { or } d \neq d^{\prime} .
\end{aligned}
$$

3 Factorization of Feynman amplitudes

- Decomposition of graph $G \in \mathcal{G}_{\mathcal{F}}(\mathcal{E})$ in terms of a vertex v_{c}.
$-r:$ root of G
$-e_{0}, \ldots, e_{d-1}$: edges adjacent to v (degree d).
- Decompose graph G in terms of $\left\{e_{i}\right\}$.
$-a_{i}$: cut node of e_{i}.

$$
\begin{align*}
G & =V\left(d, a_{0}, \ldots, a_{d-1}\right) \odot_{e_{0}} G_{0}\left(\mathcal{E}_{0}\right) \odot_{e_{1}} \ldots \odot_{e_{d-1}} G_{d-1}\left(\mathcal{E}_{d-1}\right) \tag{1}\\
r & \in G_{0} \\
a_{i} & \in \mathcal{E}_{i} \text { for } i=0, \ldots, d-1,
\end{align*}
$$

where $V\left(d, a_{0}, \ldots, a_{d-1}\right)$ is a graph obtained by connecting vertex v_{c} to $a_{i}(i=$ $0, \ldots, d-1)$.

Lemma 3.1 In the decomposition (1) of G in terms of a vertex v, the necessary and sufficient condition for $v=v_{c}$ is:

$$
\begin{align*}
& 0 \leq\left|\mathcal{E}_{0}\right| \leq \frac{|\mathcal{E}|}{2}+1 \\
& 0 \leq\left|\mathcal{E}_{k}\right|<\frac{|\mathcal{E}|}{2}+1, \quad \text { for } \quad k \geq 1 \tag{2}
\end{align*}
$$

Proof

$-v=v_{c} \Rightarrow$ condition (2):

$$
\begin{aligned}
|\mathcal{E}| / 2 & \geq F\left(e_{c}\right)=F\left(e_{0}\right)=\left|\mathcal{E}_{0}\right|-1 \\
|\mathcal{E}| / 2 & <F\left(e_{k}\right)=|\mathcal{E}|-\left|\mathcal{E}_{k}\right|+1
\end{aligned}
$$

- Condition (2) $\Rightarrow v=v_{c}$

1. e_{c} is not included in $G_{k}, k \geq 1$

$$
\begin{aligned}
& \text { If } e \in G_{k} \Rightarrow F(e)>F\left(e_{k}\right)=|\mathcal{E}|-\left|\mathcal{E}_{k}\right|+1>|\mathcal{E}| / 2 \text {. } \\
& \Rightarrow e_{c} \in G_{0} \text { or } e_{c}=e_{0}
\end{aligned}
$$

2. e_{c} cannot on the path $r-a_{0}$ in G_{0}

If e is on this path $\Rightarrow F(e)<F\left(a_{0}\right)=F\left(e_{0}\right)$.
3. Let $e \in G_{0}$ be not on the path $r-a_{0}$ in G_{0}.

Decompose G_{0} in terms of e :

$$
G_{0}=H_{0}\left(\mathcal{E}_{0}^{\prime}\right) \odot_{e} H_{1}\left(\mathcal{E}_{1}^{\prime}\right), \quad r \in \mathcal{E}_{0}^{\prime}
$$

As $r, a_{0}, a_{e} \in H_{0},\left|\mathcal{E}_{0}^{\prime}\right|>2$ and $\left|\mathcal{E}_{1}^{\prime}\right|=\left|\mathcal{E}_{0}\right|-\left|\mathcal{E}_{0}^{\prime}\right|+2<\left|\mathcal{E}_{0}\right|$. We obtain

$$
F(e)=|\mathcal{E}|-\left|\mathcal{E}_{1}^{\prime}\right|+1>|\mathcal{E}|-\left|\mathcal{E}_{0}\right|+1>|\mathcal{E}| / 2
$$

$\Rightarrow e$ cannot be e_{c}.
4. As the result, we get $e_{c}=e_{0}$.

- Standard decomposition

Decomposition of \mathcal{E} into $\left(\mathcal{E}_{0}, \ldots, \mathcal{E}_{d-1}\right)$ which satisfies for $f(0<f \leq|\mathcal{E}| / 2)$ and $d \quad\left(d_{\min } \leq d\right)$:

$$
\begin{aligned}
\mathcal{E} & =\bigcup_{i=0}^{d-1} \mathcal{E}_{i}, \\
\mathcal{E}_{i} \bigcap \mathcal{E}_{j} & =\emptyset, \quad \text { for } i \neq j, \\
r & \in \mathcal{E}_{0}, \\
\left|\mathcal{E}_{0}\right| & =f, \\
\left|\mathcal{E}_{i}\right| & <\frac{|\mathcal{E}|}{2}, \quad \text { for } i>0
\end{aligned}
$$

where r is the root of \mathcal{E}.

- Remove ambiguity in reordering $\left\{\mathcal{E}_{i}\right\}$:
- Number the external particles from 0 to $|\mathcal{E}|-1$.
- Introduce the following condition:

$$
e_{i}<e_{i+1} \quad \text { for } e_{i}=\min \left\{e \mid e \in \mathcal{E}_{i}\right\} \text { and } i>0
$$

- $\mathcal{E}(f, d)$: The set of all standard decomposition for given f and d.

Lemma 3.2 Set of graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d)$ is decomposed as:

$$
\begin{aligned}
\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d)= & \bigcup_{\left\{\mathcal{E}_{0}, \ldots, \mathcal{E}_{d-1}\right\} \in \mathcal{E}(f, d)}\left\{V\left(d, a_{0}, \ldots, a_{d-1}\right)\right\} \\
& \odot \mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{0} \cup\left\{a_{0}\right\}\right) \odot \ldots \odot \mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{d-1} \cup\left\{a_{d-1}\right\}\right) .
\end{aligned}
$$

In this decomposition, there appear no duplicated graphs.

- The set of all tree Feynman graphs are constructed from sets of sub-graphs.
- $\mathcal{A}\left(\mathcal{G}_{\mathcal{F}}(\mathcal{E})\right)$: amplitude of the set of graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E})$.
- Algorithm

1. Sum up the result of step 2 for $f=1, \ldots,|\mathcal{E}| / 2, d=d_{\text {min }}, \ldots$.
2. Generate all the possible elements of $\mathcal{E}(f, d)$ and sum up the result of step 3 .
3. Calculate momenta of $\left(a_{0}, \ldots, a_{d-1}\right)$ and then $\mathcal{A}\left(V\left(v, a_{0}, \ldots, a_{d-1}\right)\right)$. Multiply $\mathcal{A}(V)$ and the results of step 4 for $\mathcal{A}\left(\mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{i} \cup\left\{a_{i}\right\}\right)\right)$ with propagator e_{i} $(i=0, \ldots, d-1)$.
4. Calculate $\mathcal{A}\left(\mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{i} \bigcup\left\{a_{i}\right\}\right)\right)$ recursively by step 1 .

- Comments

1. No need to generate Feynman graphs explicitly.
2. $\mathcal{A}\left(\mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{0} \bigcup\left\{a_{0}\right\}\right)\right)$ can be factored out for common \mathcal{E}_{0}.

This factorization corresponds to the classification of graphs in terms of e_{c}. This optimization can be done by the code generator.
3. The same $\mathcal{G}_{\mathcal{F}}\left(\mathcal{E}_{i} \bigcup\left\{a_{i}\right\}\right)$ may still appear many times, it can be avoided by keeping a table of pairs $\left(\mathcal{E}, \mathcal{A}\left(\mathcal{G}_{\mathcal{F}}(\mathcal{E})\right)\right)$.

4. This method corresponds to a choice of "keystones" which was proposed by O'Mega group. It is shown that no double counting appears with our set of keystones.

4 Performance of the algorithm

Performance in $\phi^{3}+\phi^{4}$ theory
Comparison

- The numbers of operations in $\phi^{3}+\phi^{4}$ theory are counted.
- This method is compared with traditional calculation method.

Comments:

- The acceleration ratio increases as the number of external particles increases.
- The number of additions of partial amplitudes shows the worst acceleration.
- In the realistic model, which includes several particles and vertices, partial amplitudes are calculated for each helicity amplitudes.
- The cost of an addition of partial amplitudes increases as the number of external particles increases, while calculations of a vertex and a propagator are kept constant.

	N_{e}	N_{v}	N_{p}	N_{a}	N_{g}	
M_{1}	3	1	0	0	1	
M_{0}	3	1	0	0	1	
R	3	1	0	0	1	
M_{1}	4	7	3	3	4	
M_{0}	4	7	3	3	4	
R	4	1	1	1	1	The numbers of operations are counted for:
M_{1}	5	35	28	24	25	
M_{0}	5	65	40	24	25	N_{e} : the number of external particles,
R	5	1.86	1.43	1	1	${ }_{v}$: the number of vertices to be calculated,
M_{1}	6	165	165	129	220	
M_{0}	6	755	535	219	220	N_{p} : the number of connections in terms of propagators,
R	6	4.58	3.24	1.70	1	
M_{1}	7	686	911	594	2485	N_{a} : the number of additions of partial amplitudes,
M_{0}	7	10605	8120	2484	2485	N_{g} : the number of corresponding Feynman graphs.
R	7	15.46	8.91	4.18	1	
M_{1}	8	3283	4781	2967	34300	These numbers are compared with:
M_{0}	8	175035	140735	34299	34300	
R	8	53.32	29.43	11.56	1	M_{1} : this method,
M_{1}	9	12895	21932	12060	559405	M_{0} : traditional calculation of Feynman graphs,
M_{0}	9	3322165	2762760	559404	559405	
R	9	257.63	125.97	46.39	1	R : ratio M_{0} / M_{1} of acceleration.
M_{1}	10	57205	103137	54525	10525900	
M_{0}	10	71307775	60781875	10525899	10525900	
R	10	1246.53	589.33	193.05	1	
M_{1}	11	217118	435811	210462	224449225	
M_{0}	11	1708131425	1483682200	224449224	224449225	
R	11	7867.29	3404.41	1066.45	1	

Table 1: The number of operations in $\phi^{3}+\phi^{4}$ theory

Performance in the standard model

- Fortran code generator grcft
- A new component of GRACE.
- Based on CHANEL library (vertices and propagators).
- Common kinematics library with GRACE.
- Direct generation of Fortran code form process definition.
- Performance test:
- Compare with traditional GRACE
- Numerical calculation at fixed phase space points.
- Electro-weak theory (no colored particle)

Process	\# graphs	\# lines		CPU-time				
		GRACE	grcft	(ratio)	$	$	3.60	
:---	---:							
$e^{+} e^{-} \Rightarrow\left(e^{+} e^{-}\right)^{2}$	654							
60933	21909							
$e^{+} e^{-} \Rightarrow\left(e^{+} e^{-}\right)^{3}$	145128							
16253671	150219							

- Color factor
- Traditional method : coefficients of color base for each graph.
- This method : recursive summation of sub-graphs.
\Rightarrow color factors for sub-graphs.
- Addition and multiplication of sub-amplitudes with color factor.
- Method
- Amplitudes A_{1} and A_{2} of sub-graphs.
- Color bases $B_{i}^{(1)}$ and $B_{i}^{(2)}$
- Coefficients $a_{i}^{(1)}$ and $a_{i}^{(2)}$

$$
\begin{aligned}
& A_{1}=\sum_{i} a_{i}^{(1)} B_{i}^{(1)} \\
& A_{2}=\sum_{i} a_{i}^{(2)} B_{i}^{(2)}
\end{aligned}
$$

- Addition : let $B_{i}^{(1)}=B_{i}^{(2)}=B_{i}$

$$
A_{1}+A_{2}=\sum_{i}\left(a_{i}^{(1)}+a_{i}^{(2)}\right) B_{i}
$$

- Multiplication : multiplication table $\left\{e_{i, j, k}\right\}$ of color bases

$$
B_{i}^{(1)} B_{j}^{(2)}=\sum_{k} e_{i, j, k} B_{k}
$$

B_{k} : color bases of multiplied sub-amplitude.

$$
\begin{aligned}
A_{1} A_{2} & =\sum_{i, j} a_{i}^{(1)} a_{j}^{(2)} B_{i}^{(1)} B_{j}^{(2)} \\
& =\sum_{k} \sum_{i, j} a_{i}^{(1)} a_{j}^{(2)} e_{i, j, k} B_{k} .
\end{aligned}
$$

- FORTRAN code generation
- Multiplication table is prepared in the code generator.
- Coefficients are calculated in FORTRAN code.

$$
a_{k}=\sum_{i, j} a_{i}^{(1)} a_{j}^{(2)} e_{i, j, k}
$$

- Performance

process	\# graphs	\# of lines		CPU-time
		GRACE	grcft	(ratio)
$u \bar{u} \Rightarrow 5 g$	1240	310053	171944	1.07
$u \bar{u} \Rightarrow u \bar{u} c \bar{c} t \bar{t}$	200	28329	26375	0.81
$u \bar{u} \Rightarrow u \bar{u} c \bar{c} t \bar{t} g$	2658	386977	76459	1.16
$u \bar{u} \Rightarrow u \bar{u} c \bar{c} g g$	1454	301646	55475	1.10
$u \bar{u} \Rightarrow u \bar{u} c \bar{c} g g g$	19808	3353808	431866	1.32
$g g \Rightarrow g g g g$	220	126865	114486	1.09
$g g \Rightarrow$ ggggg	2485	730198	3862290	0.032

- Overhead of this method is large. \Rightarrow needs improvement.

5 Summary

- Classification of tree Feynman graphs without duplication.
- Factorized calculation of Feynman amplitudes.
- Good acceleration for electro-weak theory.
- Overhead of color factor is large \Rightarrow need improvement.
- This method corresponds to a choice of "keystones" proposed by 0'Mega group.

