Factorization Method of Tree Feynman Amplitudes

Toshiaki KANEKO

2005/5/26 at ACAT 2005

Contents

1	Introduction	2
2	Classification of tree Feynman graphs	5
3	Factorization of Feynman amplitudes	11
4	Performance of the algorithm	17
5	Summary	23

1 Introduction

- Many final particles \Rightarrow big number of graphs even for tree processes $\phi^3 \mod (2E-5)!!$ graphs, (E = # external particles)
- Faster algorithms
 - Alpha
 - F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332;
 - F. Caravaglios and M. Moretti, Z. für PhysikC 74 (1997) 291.
 - HERAC

A. Kanaki, C.G. Papadpouos, Comput. Phys. Commun. 132 (2000) 306.

- O'Mega

M. Moretti, T. Ohl and J. Reuter, hep-ph/0102195.

- Traditional calculations with Feynman graphs
 - \Rightarrow sub-graphs are calculated repeatedly.

• Basic idea

- 1. Gather Feynman graphs with the same propagator $e \Rightarrow \mathcal{G}_{\mathcal{F}}(e)$.
- 2. Cut graphs at propagator e.
- 3. Calculate amplitudes for the sets of sub-graphs $\mathcal{G}_{\mathcal{F}0}$ and $\mathcal{G}_{\mathcal{F}1}$.

4. Multiply the propagator and the sub-amplitudes.

The number of graphs : $|\mathcal{G}_{\mathcal{F}}(e)| = |\mathcal{G}_{\mathcal{F}0}| \times |\mathcal{G}_{\mathcal{F}1}|$. The amount of calculations : $|\mathcal{G}_{\mathcal{F}}(e)| = |\mathcal{G}_{\mathcal{F}0}| + |\mathcal{G}_{\mathcal{F}1}|$.

- Over which propagators it should be summed up ?
- Double counting ?
 - \Rightarrow need to classify Feynman graphs.
- Generation of $\mathcal{G}_{\mathcal{F}_0}$ and $\mathcal{G}_{\mathcal{F}_1}$ and then multiplication \Rightarrow generation of $\mathcal{G}_{\mathcal{F}}$?
- Factorize by edges or vertices ?

• Model

We discuss in a simple model

- One scalar particle is included.
- -n > 2 for *n*-point vertices.
 - No tadpole nor 2-point vertex. (\Rightarrow effective vertices and propagators)
- At most one kind of *n*-point vertex for each *n*.
- Consider only tree graphs including at least one vertex.
- Terms

node : an external particle or a vertex.

edge : a connection between two edges.

root : a fixed external particle.

- 2 Classification of tree Feynman graphs
 - Decomposition of a graph $G(\mathcal{E})$

$$G(\mathcal{E}) = G_0(\mathcal{E}_0) \odot_e G_1(\mathcal{E}_1).$$

- -e: edge.
- $-\mathcal{E}, \mathcal{E}_0, \mathcal{E}_1$: sets of external particles.
- $-\mathcal{E}_0$ includes root r.
- $-\mathcal{E}_0 \cap \mathcal{E}_1 = \{a_e\} : a_e \text{ is a new external particle appearing at } e.$ (We call a_e the *cut node* of edge e).
- -e and a_e are determined by \mathcal{E}_0 or \mathcal{E}_1 using momentum conservation law.

• **D-number** F(e) of edge e:

$$F(e) = |\mathcal{E}_0 - \{a_e\}| = |\mathcal{E}_0| - 1, 1 \leq F(e) < |\mathcal{E}|.$$

- $-F(e_r) = 1$ when e_r is adjacent to the root.
- For given k (1 < k < $|\mathcal{E}|$), no edge may satisfy F(e) = k.

- More than one edges may have the same value of d-number.

• Lemma 2.1 For $k \leq |\mathcal{E}|/2$, there is at most one edge e such that F(e) = k.

Proof

1. Assume that two different edges e_1 and e_2 have the same value of d-number $F(e_1) = F(e_2)$.

- 2. Edge e_2 cannot be on the path $r e_1$, since there are no tadpole nor 2-point functions. Edge e_1 cannot be on the path $r e_2$ by the same reason.
- 3. Decompose graph G in terms of e_1 and e_2 :

$$G = G_0(\mathcal{E}_0) \odot_{e_1} G_1(\mathcal{E}_1), \qquad r \in \mathcal{E}_0,$$

$$G_0 = H_0(\mathcal{E}'_0) \odot_{e_2} H_1(\mathcal{E}'_1), \qquad r \in \mathcal{E}'_0.$$

then (\mathcal{E}_0 etc. includes cut nodes)

$$k = F(e_1) = |\mathcal{E}_0| - 1 = |\mathcal{E}'_0| + |\mathcal{E}'_1| - 3,$$

= $F(e_2) = |\mathcal{E}| - |\mathcal{E}'_1| + 1.$

We obtain

$$2k = |\mathcal{E}| + |\mathcal{E}_0'| - 2.$$

 $|\mathcal{E}'_0| \ge 3 \Rightarrow 2k \ge |\mathcal{E}| + 1.$

 \diamond

• Central edge e_c

– Definition :

$$F(e_c) \leq |\mathcal{E}|/2, \quad F(e) \leq |\mathcal{E}|/2 \Rightarrow F(e) \leq F(e_c).$$

- Central edge uniquely exists in a graph \Leftarrow the last lemma + $F(e_r) = 1$ (e_r is adjacent to the root).

• Classification without duplication :

$$\mathcal{G}_{\mathcal{F}}(\mathcal{E}) = \sum_{e,F(e) \le |\mathcal{E}|/2} \mathcal{G}_{\mathcal{F}}(\mathcal{E},e),$$

$$\mathcal{G}_{\mathcal{F}}(\mathcal{E},e) \cap \mathcal{G}_{\mathcal{F}}(\mathcal{E},e') = \emptyset, \quad \text{for } e \neq e'.$$

 $\mathcal{G}_{\mathcal{F}}(\mathcal{E})$: the set of all possible tree Feynman graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E}, e)$: the set of all possible tree Feynman graphs with central edge e.

- Classification in terms of an edge or a vertex ?
 - Condition for $\mathcal{G}_{\mathcal{F}}(\mathcal{E}, e)$ is not simple. \Rightarrow classification of generated of graphs ?
 - Classification in terms of vertex \Rightarrow simpler condition. \Rightarrow generation of graphs ?
- Central vertex
 - Define *d*-number F(v) to a node v:

$$F(v) = \begin{cases} 0, & \text{for } v \text{ is the root,} \\ \min_{e \in E_v} F(e), & \text{otherwise,} \end{cases}$$

$$E_v : \text{ the set of all edges adjacent to } v.$$

- Central vertex v_c : vertex satisfying $F(v_c) = F(e_c) \le |\mathcal{E}|/2$.
- Central vertex is adjacent to e_c at the far side from root r.
- Central vertex is uniquely determined in each graph.

 $-\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d)$: a set of graphs with central vertex v_c with $f = F(v_c)$ and $d = \deg(v_c)$.

Lemma 2.2 The set of all the graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E})$ is decomposed by:

$$\mathcal{G}_{\mathcal{F}}(\mathcal{E}) = \bigcup_{f=1}^{\left\lfloor \frac{|\mathcal{E}|}{2} \right\rfloor} \bigcup_{d \ge d_{min}} \mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d),$$
$$\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d) \cap \mathcal{G}_{\mathcal{F}}(\mathcal{E}, f', d') = \emptyset, \quad for \ f \neq f' \ or \ d \neq d'.$$

3 Factorization of Feynman amplitudes

- Decomposition of graph $G \in \mathcal{G}_{\mathcal{F}}(\mathcal{E})$ in terms of a vertex v_c .
 - -r: root of G
 - $-e_0, ..., e_{d-1}$: edges adjacent to v (degree d).
 - Decompose graph G in terms of $\{e_i\}$.
 - $-a_i$: cut node of e_i .

$$G = V(d, a_0, ..., a_{d-1}) \odot_{e_0} G_0(\mathcal{E}_0) \odot_{e_1} ... \odot_{e_{d-1}} G_{d-1}(\mathcal{E}_{d-1}),$$
(1)

$$r \in G_0$$

$$a_i \in \mathcal{E}_i \text{ for } i = 0, ..., d - 1,$$

where $V(d, a_0, ..., a_{d-1})$ is a graph obtained by connecting vertex v_c to a_i (i = 0, ..., d-1).

Lemma 3.1 In the decomposition (1) of G in terms of a vertex v, the necessary and sufficient condition for $v = v_c$ is:

$$0 \le |\mathcal{E}_0| \le \frac{|\mathcal{E}|}{2} + 1,$$

$$0 \le |\mathcal{E}_k| < \frac{|\mathcal{E}|}{2} + 1, \quad for \quad k \ge 1.$$
(2)

Proof

 $-v = v_c \Rightarrow$ condition (2):

$$|\mathcal{E}|/2 \geq F(e_c) = F(e_0) = |\mathcal{E}_0| - 1,$$

$$|\mathcal{E}|/2 < F(e_k) = |\mathcal{E}| - |\mathcal{E}_k| + 1.$$

- Condition (2) $\Rightarrow v = v_c$

- 1. e_c is not included in $G_k, k \ge 1$ If $e \in G_k \Rightarrow F(e) > F(e_k) = |\mathcal{E}| - |\mathcal{E}_k| + 1 > |\mathcal{E}|/2$. $\Rightarrow e_c \in G_0$ or $e_c = e_0$.
- 2. e_c cannot on the path $r a_0$ in G_0 If e is on this path $\Rightarrow F(e) < F(a_0) = F(e_0)$.

3. Let $e \in G_0$ be not on the path $r - a_0$ in G_0 . Decompose G_0 in terms of e:

$$G_0 = H_0(\mathcal{E}'_0) \odot_e H_1(\mathcal{E}'_1), \qquad r \in \mathcal{E}'_0.$$

As $r, a_0, a_e \in H_0$, $|\mathcal{E}'_0| > 2$ and $|\mathcal{E}'_1| = |\mathcal{E}_0| - |\mathcal{E}'_0| + 2 < |\mathcal{E}_0|$. We obtain

$$F(e) = |\mathcal{E}| - |\mathcal{E}'_1| + 1 > |\mathcal{E}| - |\mathcal{E}_0| + 1 > |\mathcal{E}|/2$$

 $\Rightarrow e$ cannot be e_c .

4. As the result, we get $e_c = e_0$.

 \diamond

• Standard decomposition

Decomposition of \mathcal{E} into $(\mathcal{E}_0, ..., \mathcal{E}_{d-1})$ which satisfies for $f \quad (0 < f \leq |\mathcal{E}|/2)$ and $d \quad (d_{min} \leq d)$:

$$\mathcal{E} = \bigcup_{i=0}^{d-1} \mathcal{E}_i,$$

$$\mathcal{E}_i \bigcap \mathcal{E}_j = \emptyset, \quad \text{for } i \neq j,$$

$$r \in \mathcal{E}_0,$$

$$|\mathcal{E}_0| = f,$$

$$|\mathcal{E}_i| < \frac{|\mathcal{E}|}{2}, \quad \text{for } i > 0,$$

where r is the root of \mathcal{E} .

- Remove ambiguity in reordering $\{\mathcal{E}_i\}$:
 - Number the external particles from 0 to $|\mathcal{E}| 1$.
 - Introduce the following condition:

$$e_i < e_{i+1}$$
 for $e_i = \min\{e | e \in \mathcal{E}_i\}$ and $i > 0$.

• $\mathcal{E}(f, d)$: The set of all standard decomposition for given f and d.

Lemma 3.2 Set of graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d)$ is decomposed as:

$$\mathcal{G}_{\mathcal{F}}(\mathcal{E}, f, d) = \bigcup_{\substack{\{\mathcal{E}_0, \dots, \mathcal{E}_{d-1}\} \in \mathcal{E}(f, d) \\ \odot \mathcal{G}_{\mathcal{F}}(\mathcal{E}_0 \cup \{a_0\}) \odot \dots \odot \mathcal{G}_{\mathcal{F}}(\mathcal{E}_{d-1} \cup \{a_{d-1}\})}$$

In this decomposition, there appear no duplicated graphs.

- The set of all tree Feynman graphs are constructed from sets of sub-graphs.
- $\mathcal{A}(\mathcal{G}_{\mathcal{F}}(\mathcal{E}))$: amplitude of the set of graphs $\mathcal{G}_{\mathcal{F}}(\mathcal{E})$.
- Algorithm
 - 1. Sum up the result of step 2 for $f = 1, ..., |\mathcal{E}|/2, d = d_{min}, ...$
 - 2. Generate all the possible elements of $\mathcal{E}(f, d)$ and sum up the result of step 3.
 - 3. Calculate momenta of $(a_0, ..., a_{d-1})$ and then $\mathcal{A}(V(v, a_0, ..., a_{d-1}))$. Multiply $\mathcal{A}(V)$ and the results of step 4 for $\mathcal{A}(\mathcal{G}_{\mathcal{F}}(\mathcal{E}_i \cup \{a_i\}))$ with propagator e_i (i = 0, ..., d - 1).
 - 4. Calculate $\mathcal{A}(\mathcal{G}_{\mathcal{F}}(\mathcal{E}_i \bigcup \{a_i\}))$ recursively by step 1.

• Comments

- 1. No need to generate Feynman graphs explicitly.
- 2. $\mathcal{A}(\mathcal{G}_{\mathcal{F}}(\mathcal{E}_0 \bigcup \{a_0\}))$ can be factored out for common \mathcal{E}_0 . This factorization corresponds to the classification of graphs in terms of e_c . This optimization can be done by the code generator.
- 3. The same $\mathcal{G}_{\mathcal{F}}(\mathcal{E}_i \bigcup \{a_i\})$ may still appear many times, it can be avoided by keeping a table of pairs $(\mathcal{E}, \mathcal{A}(\mathcal{G}_{\mathcal{F}}(\mathcal{E})))$.

4. This method corresponds to a choice of "keystones" which was proposed by **O'Mega** group. It is shown that no double counting appears with our set of keystones.

4 Performance of the algorithm

Performance in $\phi^3 + \phi^4$ theory

Comparison

- The numbers of operations in $\phi^3 + \phi^4$ theory are counted.
- This method is compared with traditional calculation method.

Comments:

- The acceleration ratio increases as the number of external particles increases.
- The number of additions of partial amplitudes shows the worst acceleration.
- In the realistic model, which includes several particles and vertices, partial amplitudes are calculated for each helicity amplitudes.
- The cost of an addition of partial amplitudes increases as the number of external particles increases, while calculations of a vertex and a propagator are kept constant.

	N_e	N_v	N_p	N_a	N_g	
M_1	3	1	0	0	1	
M_0	3	1	0	0	1	
R	3	1	0	0	1	
M_1	4	7	3	3	4	ĺ
M_0	4	7	3	3	4	
R	4	1	1	1	1	T
M_1	5	35	28	24	25	ĺ
M_0	5	65	40	24	25	
R	5	1.86	1.43	1	1	
M_1	6	165	165	129	220	
M_0	6	755	535	219	220	
R	6	4.58	3.24	1.70	1	
M_1	7	686	911	594	2485	
M_0	7	10605	8120	2484	2485	
R	7	15.46	8.91	4.18	1	
M_1	8	3283	4781	2967	34300	Γ
M_0	8	175035	140735	34299	34300	
R	8	53.32	29.43	11.56	1	-
M_1	9	12895	21932	12060	559405	
M_0	9	3322165	2762760	559404	559405	
R	9	257.63	125.97	46.39	1	
M_1	10	57205	103137	54525	10525900	ĺ
M_0	10	71307775	60781875	10525899	10525900	
R	10	1246.53	589.33	193.05	1	
M_1	11	217118	435811	210462	224449225	
M_0	11	1708131425	1483682200	224449224	224449225	
R	11	7867.29	3404.41	1066.45	1	

The numbers of operations are counted for: N_e : the number of external particles, N_v : the number of vertices to be calculated, N_p : the number of connections in terms of propagators, N_a : the number of additions of partial amplitudes, N_g : the number of corresponding Feynman graphs. These numbers are compared with: M_1 : this method,

 M_0 : traditional calculation of Feynman graphs,

R: ratio M_0/M_1 of acceleration.

Table 1: The number of operations in $\phi^3 + \phi^4$ theory

Performance in the standard model

- Fortran code generator grcft
 - A new component of **GRACE**.
 - Based on CHANEL library (vertices and propagators).
 - Common kinematics library with **GRACE**.
 - Direct generation of Fortran code form process definition.
- Performance test:
 - Compare with traditional $\ensuremath{\mathsf{GRACE}}$
 - Numerical calculation at fixed phase space points.
- Electro-weak theory (no colored particle)

Process	# graphs	# lines		CPU-time
		GRACE	grcft	(ratio)
$e^+e^- \Rightarrow (e^+e^-)^2$	654	60933	21909	3.60
$e^+e^- \Rightarrow (e^+e^-)^3$	145128	16253671	150219	83.70
$e^+e^- \Rightarrow e^+e^-\mu^+\mu^-\tau^+\tau^-$	12094	1368735	41648	15.14
$e^+e^- \Rightarrow e^+e^-\mu^+\mu^-\tau^+\tau^-\gamma$	117680	14923326	101629	142.86

- Color factor
 - Traditional method : coefficients of color base for each graph.
 - This method : recursive summation of sub-graphs.
 - \Rightarrow color factors for sub-graphs.
 - Addition and multiplication of sub-amplitudes with color factor.
- Method
 - Amplitudes A_1 and A_2 of sub-graphs.
 - Color bases $B_i^{(1)}$ and $B_i^{(2)}$
 - Coefficients $a_i^{(1)}$ and $a_i^{(2)}$

$$A_1 = \sum_i a_i^{(1)} B_i^{(1)},$$
$$A_2 = \sum_i a_i^{(2)} B_i^{(2)}.$$

- Addition : let $B_i^{(1)} = B_i^{(2)} = B_i$

$$A_1 + A_2 = \sum_i (a_i^{(1)} + a_i^{(2)}) B_i$$

– Multiplication : multiplication table $\{e_{i,j,k}\}$ of color bases

$$B_i^{(1)}B_j^{(2)} = \sum_k e_{i,j,k}B_k.$$

 B_k : color bases of multiplied sub-amplitude.

$$A_1 A_2 = \sum_{i,j} a_i^{(1)} a_j^{(2)} B_i^{(1)} B_j^{(2)}$$
$$= \sum_k \sum_{i,j} a_i^{(1)} a_j^{(2)} e_{i,j,k} B_k.$$

- FORTRAN code generation
 - Multiplication table is prepared in the code generator.
 - Coefficients are calculated in FORTRAN code.

$$a_k = \sum_{i,j} a_i^{(1)} a_j^{(2)} e_{i,j,k}.$$

• Performance

process	# graphs	# of lines		CPU-time
		GRACE	grcft	(ratio)
$u\bar{u} \Rightarrow 5g$	1240	310053	171944	1.07
$u\bar{u} \Rightarrow u\bar{u}c\bar{c}t\bar{t}$	200	28329	26375	0.81
$u\bar{u} \Rightarrow u\bar{u}c\bar{c}t\bar{t}g$	2658	386977	76459	1.16
$u\bar{u} \Rightarrow u\bar{u}c\bar{c}gg$	1454	301646	55475	1.10
$u\bar{u} \Rightarrow u\bar{u}c\bar{c}ggg$	19808	3353808	431866	1.32
$gg \Rightarrow gggg$	220	126865	114486	1.09
$gg \Rightarrow ggggg$	2485	730198	3862290	0.032

• Overhead of this method is large. \Rightarrow needs improvement.

5 Summary

- Classification of tree Feynman graphs without duplication.
- Factorized calculation of Feynman amplitudes.
- Good acceleration for electro-weak theory.
- Overhead of color factor is large \Rightarrow need improvement.
- This method corresponds to a choice of *"keystones"* proposed by **O'Mega** group.