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1 Introduction

e Many final particles = big number of graphs even for tree processes
¢ model : (2F — 5)!l graphs, (E = # external particles)

e Faster algorithms

— Alpha
F. Caravaglios and M. Moretti, Phys. Lett. B358 (1995) 332;
F. Caravaglios and M. Moretti, Z. fiir PhysikC 74 (1997) 291.

— HERAC

A. Kanaki, C.G. Papadpouos, Comput. Phys. Commun. 132 (2000) 306.
— 0’Mega

M. Moretti, T. Ohl and J. Reuter, hep-ph/0102195.

e Traditional calculations with Feynman graphs
= sub-graphs are calculated repeatedly.



e Basic idea

1. Gather Feynman graphs with the same propagator e = Gz(e).
2. Cut graphs at propagator e.

3. Calculate amplitudes for the sets of sub-graphs Gy and Gz;.
4. Multiply the propagator and the sub-amplitudes.

The number of graphs |Gr(e)| = |Gro| X |Gr1.
The amount of calculations : |Gr(e)| = |Gro| + |G-
— Over which propagators it should be summed up 7

— Double counting ?
= need to classify Feynman graphs.

— Generation of Gry and G, and then multiplication = generation of G¢ ?

— Factorize by edges or vertices 7



e Model

We discuss in a simple model

— One scalar particle is included.

— n > 2 for n-point vertices.
No tadpole nor 2-point vertex. (= effective vertices and propagators)

— At most one kind of n-point vertex for each n.

— Consider only tree graphs including at least one vertex.
e Terms
node : an external particle or a vertex.

edge : a connection between two edges.

root : a fixed external particle.



2 Classification of tree Feynman graphs

e Decomposition of a graph G(&)

G(E) = Go(&) ©e G1(&1).
— e : edge.

— &,&, & - sets of external particles.
— &y includes root r.

— & NE =Aae} : aeis anew external particle appearing at e.
(We call a, the cut node of edge e).

— e and a, are determined by &y or & using momentum conservation law.



e D-number F(e) of edge e :

Fle) = 1€ —{a} = &)] — 1
1 < F(e) < (€]
— F(e,) = 1 when e, is adjacent to the root.
— For given k(1 < k < |€]), no edge may satisty F(e) = k.

— More than one edges may have the same value of d-number.

e Lemma 2.1 For k < |£|/2, there is at most one edge e
such that F(e) = k.



Proof

1. Assume that two different edges e; and e have the same value of d-number F'(e1) =
F(eg).

2. Edge ey cannot be on the path r — ey, since there are no tadpole nor 2-point
functions. Edge e; cannot be on the path r» — ey by the same reason.

3. Decompose graph G in terms of e; and e»:
G = Go(&) O Gi(&1), r e &,
Gy Hy(&) ©e, H1(E7), re &
then ( & etc. includes cut nodes)
k= Flel) = [&] — 1= &+ €] =3,
= Fles) = [€] — |&1] + L.
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We obtain
= €]+ &) - 2.
&l >3 =2k > |E]+ 1.
&

e (Central edge e,

— Definition :
Fle.) < [€]/2,  Fle) < [€]/2= F(e) < Fle.).

— Central edge uniquely exists in a graph
< the last lemma + F(e,) =1 (e, is adjacent to the root).

e Classification without duplication :

Gr(€) = Z Gr(€.e),

(e)<[€1/2

Gr(€.e) N Qf( e)=0, fores#e.

Gr(E) : the set of all possible tree Feynman graphs
Gr(E,e) : the set of all possible tree Feynman graphs with central edge e.
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e Classification in terms of an edge or a vertex 7

— Condition for G£(€, e) is not simple. = classification of generated of graphs 7

— Classification in terms of vertex = simpler condition. = generation of graphs ?
e (Central vertex
— Define d-number F(v) to a node v :

0, for v is the root,
F(v) = . .
min.ep, F'(€), otherwise,
E, : theset of all edges adjacent to v.

— Central vertex v, : vertex satisfying F(v.) = F(e.) < |E]/2.
— Central vertex is adjacent to e. at the far side from root r.

— Central vertex is uniquely determined in each graph.

— Gr(&, f,d) : aset of graphs with central vertex v. with f = F(v.) and d = deg(v,).
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Lemma 2.2 The set of all the graphs Gz(E) is decomposed by:

5]
| 9r(& f.0)

f dmzn

Gr(€ ) NGr(E, f'd) = 0, for f#[ ord#d.

'_
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3 Factorization of Feynman amplitudes

e Decomposition of graph G € G£(€) in terms of a vertex v,.

—r: root of G

— €q, .-, €41 : edges adjacent to v (degree d).

— Decompose graph G in terms of {e;}.

— a; : cut node of e;.
G = V(d,ag,...,a5-1) ©cy Go(&) Oey - Ocy | Ga-1(E4-1), (1)
r € Gy
a; € & fori=0,...,d—1,

where V (d, ag, ..., a4_1) is a graph obtained by connecting vertex v, to a; (i =

0,....d—1).
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Lemma 3.1 In the decomposition (1) of G in terms of a vertex v, the necessary
and sufficient condition for v = v, 1s:

0 S ’50‘ S @ + 17
2
0<|&] < % + 1, for k>1. (2)

Proof
— v = v, = condition (2):

€/2 = Fle.) = Fleo) = [&] = 1,
/2 < Flex) =[] — & + 1.

1V

— Condition (2) = v = v,
1. e. is not included in G, k > 1
Ifee G = F(e) > F(€k> = ‘g’ — ‘&f‘ +1> ‘5‘/2
= e. € Gy or e. = ey.
2. e, cannot on the path » — a¢ in G
If e is on this path = F(e) < F(ag) = F(ep).
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3. Let e € Gy be not on the path » — ag in Gy,
Decompose (G in terms of e:

Gy = H()(g(l)) Oe Hl((g{), (= 86

As r,ag,a. € Hy, |E| > 2 and |[E]] = |&o] — |EH + 2 < &l
We obtain

Fle) = |€] = &+ 1> €] —[&| +1> [€]/2

— e cannot be e,.

4. As the result, we get e. = ey.
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e Standard decomposition
Decomposition of &€ into (&, ..., E4—1) which satisfies for f (0 < f < |€]/2) and
d (dpin < d)

d—1
e =|Je,
1=0
E(E =0, fori#j
r € &,
&l = T,
&l < E—’, for i > 0,

where 7 is the root of £.
e Remove ambiguity in reordering {&;}

— Number the external particles from 0 to |E| — 1 .

— Introduce the following condition:
e; < €ii1 for ¢; = min{ele € &} and ¢ > 0.

e £(f,d) : The set of all standard decomposition for given f and d.
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Lemma 3.2 Set of graphs Gr(E, f,d) is decomposed as:
Gr(E, f.d) = ) {Vd.ap,....a0-1)}

{50,...,5d,1}€5(f,d)
OGr(&U{an}) © ... © Gr(Eq—1 U{ag-1}).

In this decomposition, there appear no duplicated graphs.

e The set of all tree Feynman graphs are constructed from sets of sub-graphs.
o A(Gr(&)) : amplitude of the set of graphs G£(&).
e Algorithm

1. Sum up the result of step 2 for f =1,....|E|/2,d = dwmin, ---
2. Generate all the possible elements of £(f, d) and sum up the result of step 3.

3. Calculate momenta of (aq, ..., ag—1) and then A(V (v, ag, ..., ag_1)).
Multiply A(V') and the results of step 4 for A(G#(E; U {a;})) with propagator e;
(i=0,...d—1).

4. Calculate A(G#(&; [ J{ai})) recursively by step 1.
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e Comments

1. No need to generate Feynman graphs explicitly.
2. A(Gr(&U{ap})) can be factored out for common &.

This factorization corresponds to the classification of graphs in terms of e.. This
optimization can be done by the code generator.

3. The same Gr(&; | J{a;}) may still appear many times, it can be avoided by keeping
a table of pairs (£, A(G£(E))).

4. This method corresponds to a choice of “keystones” which was proposed by 0’Mega
group. It is shown that no double counting appears with our set of keystones.
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4 Performance of the algorithm

Performance in ¢° + ¢* theory
Comparison

e The numbers of operations in ¢* + ¢* theory are counted.
e This method is compared with traditional calculation method.
Comments:
e The acceleration ratio increases as the number of external particles increases.
e The number of additions of partial amplitudes shows the worst acceleration.

e In the realistic model, which includes several particles and vertices, partial amplitudes
are calculated for each helicity amplitudes.

e The cost of an addition of partial amplitudes increases as the number of external par-
ticles increases, while calculations of a vertex and a propagator are kept constant.
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N, N, N, N, N,
M, | 3 1 0 0 1
My | 3 1 0 0 1
R | 3 1 0 0 1
M, | 4 7 3 3 1
My | 4 7 3 3 4
R | 4 1 1 1 1
M, | 5 35 28 24 25
My| 5 65 40 24 25
R | 5 1.86 1.43 1 1
M, | 6 165 165 129 220
My | 6 755 535 219 220
R | 6 4.58 3.24 1.70 1
M, | 7 636 911 594 2485
My | 7 10605 8120 2484 2485
R | 7 15.46 8.91 4.18 1
M, | 8 3283 4781 2967 34300
My | 8 175035 140735 34299 34300
R | 8 53.32 29.43 11.56 1
M, | 9 12895 21032 12060 559405
My | 9 3322165 2762760 559404 559405
R | 9 257.63 125.97 46.39 1
M, | 10 57205 103137 54525 | 10525900
My | 10 | 71307775 | 60781875 | 10525899 | 10525900
R | 10 1246.53 589.33 193.05 1
M, | 11 217118 435811 210462 | 224449225
My | 11 | 1708131425 | 1483682200 | 224449224 | 224449225
R |11 7867.29 3404.41 | 1066.45 1

The numbers of operations are counted for:
N.: the number of external particles,

N,: the number of vertices to be calculated,

»: the number of connections in terms of propagators,
N,: the number of additions of partial amplitudes,
Ngy: the number of corresponding Feynman graphs.

These numbers are compared with:

M : this method,
My: traditional calculation of Feynman graphs,

R: ratio My/M; of acceleration.

Table 1: The number of operations in ¢* + ¢* theory
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Performance in the standard model

e Fortran code generator grcft

— A new component of GRACE.

— Based on CHANEL library (vertices and propagators).

— Common kinematics library with GRACE.

— Direct generation of Fortran code form process definition.

e Performance test:

— Compare with traditional GRACE

— Numerical calculation at fixed phase space points.

e [lectro-weak theory (no colored particle)

Process # graphs # lines CPU-time

GRACE | grcft (ratio)
ete” = (ete™)? 654 60933 | 21909 3.60
ete” = (ete™)? 145128 | 16253671 | 150219 83.70
ete” = efe putpu 707" 12094 | 1368735 | 41648 15.14
ete” = efeputpu 777y 117680 | 14923326 | 101629 142.86
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e Color factor

— Traditional method : coefficients of color base for each graph.

— This method : recursive summation of sub-graphs.
= color factors for sub-graphs.

— Addition and multiplication of sub-amplitudes with color factor.
e Method

— Amplitudes A; and Ay of sub-graphs.

— Color bases BZ-(D and BZ@)
(1) (2)

— Coeflicients a; " and a,

Al = Z G,Z(-l)BZ'(l),

Ay — Zagz)Bi@).

— Addition : let BY = B — B,

1 1
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— Multiplication : multiplication table {e; ;;} of color bases
1) (2
B'BY =Y e 1By
k

B;. : color bases of multiplied sub-amplitude.

J

3y
= Z Z agl)af)ei,j,kBk.
k1,7

A4 = Y aal? BB

e FORTRAN code generation

— Multiplication table is prepared in the code generator.

— Coefficients are calculated in FORTRAN code.

ap — Zagl)a?ei’j,k.

0]
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e Performance

process # graphs # of lines CPU-time

GRACE | grcft (ratio)
utt = 5g 1240 | 310053 | 171944 1.07
ul = uucctt 200 28329 26375 0.81
ull = utccttyg 2658 | 386977 76459 1.16
UL = UUCCY] 1454 | 301646 55475 1.10
Ul = UUCCgqy 19808 | 3353808 | 431866 1.32
g9 = 94999 220 | 126865 | 114486 1.09
99 = 99999 2485 | 730198 | 3862290 0.032

e Overhead of this method is large. = needs improvement.
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5 Summary

e (Classification of tree Feynman graphs without duplication.
e Factorized calculation of Feynman amplitudes.

e Good acceleration for electro-weak theory.

e Overhead of color factor is large = need improvement.

e This method corresponds to a choice of “keystones” proposed by 0’Mega group.
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