
The CUBA Library

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, The Cuba Library – p.1

Why is multidimensional integration difficult?

Imagine computing the volume of the d-dim.
sphere Sd by integrating its characteristic func-
tion χ = θ(1 − ‖x‖2) inside the surrounding
hypercube Cd = [−1, 1]d.

χ = 1

χ = 0

The following table gives the ratio of the volumes:

d 2 5 10 50 100
Vol Sd
Vol Cd

.785 .164 .0025 1.5× 10−28 1.9× 10−70

This ratio can in a sense be thought of as the chance that a
general-purpose integrator will find the sphere at all!

T. Hahn, The Cuba Library – p.2

Integrals

CUBA can do only Riemann integrals of the form

I f :=
Z 1

0
ddx f (~x)

where it is assumed that f (~x) is given as a function or
subroutine that can be sampled at arbitrary points ~xi ∈ [0, 1]d.

This is not a serious restriction since most integrands can
easily be transformed to the unit hypercube:

Z b1

a1

· · ·
Z bd

ad

ddx f (~x) =
Z 1

0
ddy f (~x)

d

∏
i=1

(bi − ai) ,

where xi = ai + (bi − ai)yi .

T. Hahn, The Cuba Library – p.3

Overview of the CUBA Routines

Routine Basic method Type Variance reduction

Vegas Sobol sample quasi MC importance sampling
or MT sample pseudo MC

Suave Sobol sample quasi MC globally adaptive subdivision
or MT sample pseudo MC + importance sampling

Divonne Korobov sample lattice MC stratified sampling,
or Sobol sample quasi MC aided by methods from
or MT sample pseudo MC numerical optimization
or cubature rules deterministic

Cuhre cubature rules deterministic globally adaptive subdivision

• Very similar invocation (easily interchangeable)
• Fortran, C/C++, Mathematica interface provided
• Can integrate vector integrands

T. Hahn, The Cuba Library – p.4

Deterministic vs. Monte Carlo Methods

Deterministic

Use a Quadrature Formula

I f ≈ Qn f :=
n

∑
i=1

wi f (~xi)

with specially chosen
Nodes ~xi and Weights wi.

Error estimation e.g. by Null
Rules Nm which give zero
for functions Qn integrates
exactly and thus measure
errors due to “higher terms.”

Monte Carlo

Take the Statistical Average
over random samples ~xi

I f ≈Mn f :=
1
n

n

∑
i=1

f (~xi) .

The Standard Deviation is a
probabilistic estimate of the
integration error:

σ(Mn f) =
√

Mn f 2 −M2
n f .

T. Hahn, The Cuba Library – p.5

Construction of Polynomial Rules

Select orthogonal basis of functions {b1, . . . , bm} (usually
monomials) with which most f can (hopefully) be
approximated sufficiently and impose that each bi be
integrated exactly by Qn:

I bi
!

= Qnbi ⇔
n

∑
k=1

wkbi(~xk) =
Z 1

0
ddx bi(~x) .

These are m Moment Equations for nd + n unknowns ~xi, wi,
and a formidable, in general nonlinear, system of equations.

Additional assumptions (e.g. Symmetries) are often necessary
to solve this system.

Example: the Genz–Malik rules used in CUBA’s Cuhre.

T. Hahn, The Cuba Library – p.6

Globally Adaptive Subdivision

If an error estimate is available, global adaptiveness is easy to
implement:

1. Integrate the entire region: Itot ± Etot.

2. while Etot > max(εrel Itot, εabs)
3. Find the region r with the largest error.

4. Bisect (or otherwise cut up) r.
5. Integrate each subregion of r separately.

6. Itot = ∑ Ii, Etot =
√

∑ E2
i .

7. end while

T. Hahn, The Cuba Library – p.7

Importance Sampling

In Importance Sampling one introduces a weight function:

I f =
Z 1

0
ddx w(~x)

f (~x)
w(~x)

, w(~x) > 0 , I w = 1 .

• One must be able to sample from the distribution w(~x),

• f/w should be “smooth,” such that σw(f/w) < σ(f),
e.g. w and f should have the same peak structure.

The ideal choice is known to be w(~x) = | f (~x)|/I f which has
σw(f/w) = 0.

T. Hahn, The Cuba Library – p.8

Importance Sampling in Vegas

Margin Sums

Grid minus
linear progression

The grid shows the progression along the respective axis.
Progression is slow (i.e. many points are sampled) where the
grid’s value is small.

T. Hahn, The Cuba Library – p.9

Stratified Sampling

Stratified Sampling works by sampling subregions. Consider:

n samples in na = n/2 samples in ra,
total region ra + rb nb = n/2 samples in rb

Integral I f ≈Mn f I f ≈ 1
2(Ma

n/2 f + Mb
n/2 f)

Variance σ2 f
n

1
4

(
σ2

a f
n/2 +

σ2
b f

n/2

)

= 1
2n

(
σ2

a f + σ2
b f
)

+ = 1
2n

(
σ2

a f + σ2
b f
)

1
4n

(
Ia f − Ib f

)2

The optimal reduction of variance is for na/nb = σa f/σb f .
Thus: Split up the integration region into parts with equal
variance, then sample all parts with same number of points.
But: naive splitting causes a 2d increase in regions!

T. Hahn, The Cuba Library – p.10

Number-Theoretic Methods

The basis for the number-theoretical formulas is the
Koksma–Hlawka Inequality:

The error of every Qn f = 1
n ∑n

i=1 f (~xi) is bounded by

|Qn f − I f | 6 V(f) D∗(~x1, . . . , ~xn) .

where V is the “Variation in the sense of Hardy and Krause”
and D∗ is the Discrepancy of the sequence ~x1, . . . , ~xn,

D∗(~x1, . . . , ~xn) = sup
r∈ [0,1]d

∣∣∣∣
ν(r)

n
− Vol r

∣∣∣∣ ,

where ν(r) counts the ~xi that fall into r. For an Equidistributed
Sequence, ν(r) should be proportional to Vol r.

T. Hahn, The Cuba Library – p.11

Low-Discrepancy Sequences and Quasi-Monte Carlo

Cannot do much about V(f), but can sample with
Low-Discrepancy Sequences a.k.a. Quasi-Random Numbers
which have discrepancies significantly below the
pseudo-random numbers used in ordinary Monte Carlo, e.g.

• Halton Sequences,

• Sobol Sequences,

• Faure Sequences.

These Quasi-Monte Carlo Methods typically achieve
convergence rates of O(logd−1 n/n) which are much better
than the O(1/

√
n) of ordinary Monte Carlo.

Example: CUBA’s Vegas and Suave use Sobol sequences.

T. Hahn, The Cuba Library – p.12

Comparison of Sequences

Mersenne Twister Sobol
Pseudo-Random Numbers Quasi-Random Numbers

n = 3000 n = 4000

n = 1000 n = 2000

n = 3000 n = 4000

n = 1000 n = 2000

T. Hahn, The Cuba Library – p.13

Lattice Methods

Lattice Methods require a periodic integrand, usually obtained
by applying a Periodizing Transformation (e.g. x→ 3x2 − 2x3).
Sampling is done on an Integration Lattice L spanned by a
carefully selected integer vector ~z:

Qn f =
1
n

n−1

∑
i=0

f
(
{ i

n~z }
)
, {x} = fractional part of x .

Construction principle for ~z: knock out as many low-order
“Bragg reflections” as possible in the error term:

Qn f − I f = ∑
~k∈Zd

f̃ (~k) Qne2πi~k·~x − f̃ (~0) = ∑
~k∈L⊥,~k 6=~0

f̃ (~k) ,

where L⊥ = {~k ∈ Zd : ~k · ~z = 0 (mod n)} is the Reciprocal
Lattice. Method: extensive computer searches.

T. Hahn, The Cuba Library – p.14

Vegas Implementation in CUBA

• Monte Carlo algorithm.

• Variance reduction: importance sampling.

• Algorithm:
. Iteratively build up a piecewise constant weight function,

represented on a rectangular grid.

. Each iteration consists of a sampling step followed by a
refinement of the grid.

• Vegas can memorize its grid for subsequent invocations,

• Vegas can save its internal state such that the
calculation can be resumed e.g. after a crash,

• Choice of quasi- or pseudo-random numbers for sampling.

T. Hahn, The Cuba Library – p.15

Suave Implementation in CUBA

• Monte Carlo algorithm.

• Variance reduction: Vegas-style importance sampling
combined with globally adaptive subdivision.

• Algorithm:
. Until the requested accuracy is reached, bisect the region with the

largest error along the axis in which the fluctuations of the
integrand are reduced most.

. Prorate the number of new samples in each half for its fluctuation.

. Vegas grid is kept across divisions, i.e. a region which is the result
of n − 1 subdivisions has had n Vegas iterations performed on it.

• Hybrid Vegas/Miser algorithm.

• Somewhat memory intensive.

T. Hahn, The Cuba Library – p.16

Divonne Implementation in CUBA

• Monte Carlo algorithm (+ cubature rules for comparison).

• Variance reduction: Stratified sampling.

• 3-Phase Algorithm:
Partitioning – Sampling – Refinement.

• Original algorithm extended by Refinement Phase.

• The user can point out extrema for tricky integrands.

• For integrands which cannot be sampled too close to the
border, a ‘safety distance’ can be prescribed in which
values will be extrapolated from two points in the
interior.

T. Hahn, The Cuba Library – p.17

Divonne Algorithm

• PHASE 1 – Partitioning

. For each subregion, ‘actively’ determine sup f and inf f using
methods from numerical optimization.

. Move ‘dividers’ around until all subregions
have approximately equal spread, defined as

Spread(r) =
1
2

Vol(r)
(

sup
~x∈r

f (~x)− inf
~x∈r

f (~x)
)
.

• PHASE 2 – Sampling
Sample the subregions independently with the same number of points
each. The latter is extrapolated from the results of Phase 1.

• PHASE 3 – Refinement
Further subdivide or sample again if results from Phase 1 and 2 do not
agree within their error.

T. Hahn, The Cuba Library – p.18

Cuhre Implementation in CUBA

• Deterministic algorithm (uses Genz–Malik cubature rules
of polynomial degree).

• Variance reduction: Globally adaptive subdivision.

• Algorithm:
. Until the requested accuracy is reached, bisect the region with the

largest error along the axis with the largest fourth difference.

• Consistent interface only, same as original DCUHRE
(TOMS Algorithm 698).

T. Hahn, The Cuba Library – p.19

Test Run

Cuhre

Divonne

Suave

Vegas

εrel = 3 × 10−3
e+ e− → t̄ t γ

Number of regions

√
s/GeV

1000900800700600500400

104

103

102

101

100

Integrand evaluations

√
s/GeV

1000900800700600500400

106

105

104

103

Above all: Very important to have several methods for
cross-checking the results!

T. Hahn, The Cuba Library – p.20

CUBA Chooser

CUBA includes a “one-stop interface” which further simplifies
the invocation of the CUBA routines:

subroutine Cuba(method, ndim, ncomp, integrand,

& integral, error, prob)

integer method, ndim, ncomp

external integrand

double precision integral(ncomp)

double precision error(ncomp)

double precision prob(ncomp)

The user merely has to choose method = 1, 2, 3, 4 for
Vegas, Suave, Divonne, Cuhre.

All other integration parameters are determined internally by
the routine, i.e. this is not a finished product, but can (should)
be modified by the user.

T. Hahn, The Cuba Library – p.21

Mathematica interface

• Used almost like NIntegrate.

• The integrand is evaluated completely in Mathematica.
Can do things like

Cuhre[Zeta[x y], {x,2,3}, {y,4,5}]

Mathematica

Vegas[f, . . .]

integrand f
(compiled function)

C

void Vegas(. . .)

request samples

MathLink

{~x1, ~x2, . . . }

{ f1, f2, . . . }

T. Hahn, The Cuba Library – p.22

Partition Viewer

CUBA’s Partition Viewer
visualizes the partition
taken by the integration
algorithm.

Verbosity level 3 must be
chosen and the output
piped through partview:

myprog | partview 1 2

T. Hahn, The Cuba Library – p.23

Summary

• CUBA is a library for multidimensional numerical
integration written in C.

• Four independent algorithms: Vegas, Suave, Divonne,
and Cuhre have similar invocations and can be
exchanged easily for testing.

• All routines can integrate vector integrands.

• CUBA has a Fortran, C/C++, and Mathematica interface.

• The package includes additional tools, such as one-stop
invocation and a partition viewer.

• Available at http://www.feynarts.de/cuba (LGPL) and
easy to build (autoconf).

T. Hahn, The Cuba Library – p.24

	Why is multidimensional integration difficult?
	Integrals
	Overview of the cuba Routines
	Deterministic vs. Monte Carlo Methods
	Construction of Polynomial Rules
	Globally Adaptive Subdivision
	Importance Sampling
	Importance Sampling in Vegas
	Stratified Sampling
	Number-Theoretic Methods
	Low-Discrepancy Sequences and Quasi-Monte Carlo
	Comparison of Sequences
	Lattice Methods
	Vegas Implementation in cuba
	Suave Implementation in cuba
	Divonne Implementation in cuba
	Divonne Algorithm
	Cuhre Implementation in cuba
	Test Run
	cuba Chooser
	Mathematica interface
	Partition Viewer
	Summary

