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Generation of Difference Schemes

Consider PDEs in the conservation law form

∂v
∂x

+
∂

∂y
F(v) = 0 ⇐⇒

∮
Γ

−F(v)dx + vdy = 0 .

Γ is arbitrary closed contour, v is a m−vector function in unknown
n−vector function u and its partial derivatives ux , uy , uxx , uxy , uyy , . . .
F is a function that maps Rm into Rm.

To do discretization we set

u(x , y) = u(xj , yk ) ≡ uj k , ux(x , y) = ux(xj , yk ) ≡ (ux)j k , . . .
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Generation of Difference Schemes

Choose the integration contour and add the integral relations, e.g.,

-

6
�

?

u
uu

uk

k + 1

k + 2

j j + 1 j + 2

xj+2∫
xj

uxdx = u(xj+2, y)− u(xj , y),
yk+2∫
yk

uydy = u(x , yk+2)− u(x , yk ), . . . .
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Generation of Difference Schemes

Using a numerical integration method, e.g. the midpoint one, with

xj+1 − xj = yk+1 − yk = 4h

we rewrite the equations and the relations as

−(F(v)j+1 k − F(v)j+1 k+2) + (vj+2 k+1 − vj k+1) = 0,

(ux)j+1 k · 24h = uj+2 k − uj k ,

(uy )j k+1 · 24h = uj k+2 − uj k ,

................................................

A difference scheme for u is obtained (Mozzhilkin, Blinkov’01) by
elimination of all partial derivatives ux , uy , uxx , . . . from the above
system. The elimination can be achieved by constructing a Gröbner
basis (GB), if it exists (finite). For linear PDEs GB always exists.
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Reduction of Feynman Integrals

Consider scalar L−loop integral with n internal lines

Iν :=

∫
ddk1 · · ·ddkL

1∏n
i=1 P νi

i
.

Pi are propagators and ν = {ν1, ν2, . . . , νn} ∈ Zn is multi-index.

Iν satisfies recurrence relations (RR) derived from the integration by
part method (Chetyrkin, Tkachov’81).

After a proper shift of indices µ = ν − λ, λ ∈ Zn
≥0, RR can be written in

the form
fj :=

∑
α

b j
α θα ◦ Iµ = 0 , j = 1, . . . , p .
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Reduction of Feynman Integrals

θα = θα1
1 · · · θαn

n , α = {α1, . . . , αn} ∈ Zn
≥0. θi denotes the right-shift

operator for the i-th index, i.e.,

θi ◦ Iµ = Iµ1,...,µi+1,...,µn .

Coefficients b j
α are polynomials in indices {ν1, . . . , νn} and physical

parameters: masses, scalar products of external momenta, space-time
dimension d .

Converting difference polynomials fj into the Gröbner basis form allows
(Gerdt’04):

Define basic (master) integrals as those independent modulo RR.
Reduce an integral Iν̄ with shifted indices ν −→ ν̄ to the basic
integrals by using the standard Gröbner reductions.

V.Gerdt (JINR, Dubna, Russia) On Computation of GB for LDS ACAT 2005 9 / 30



Contents
1 Motivation

Generation of Difference Schemes for PDEs
Reduction of Feynman Integrals

2 Difference Algebra
Rings of Difference Polynomials
Ranking

3 Gröbner Bases
Definition
Janet-like Bases

4 Algorithm
Description
Illustration: FDS for Laplace Equation

5 Consclusions

6 References

V.Gerdt (JINR, Dubna, Russia) On Computation of GB for LDS ACAT 2005 10 / 30



Difference Algebra

Let {y1, . . . , ym} be the set of indeterminates such, for example, as
functions of n−variables {x1, . . . , xn} and θ1, . . . , θn be the set of
mutually commuting difference operators (differences), e.g.,

θi ◦ y j = y j(x1, . . . , xi + 1, . . . , xn).

A difference ring R with differences θ1, . . . , θn is a commutative ring R
such that ∀f , g ∈ R, 1 ≤ i , j ≤ n

θiθj = θjθi , θi ◦ (f + g) = θi ◦ f + θi ◦ g, θi ◦ (f g) = (θi ◦ f )(θi ◦ g)

Similarly one defines a difference field.
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Difference Algebra

Let K be a difference field. Denote by R := K{y1, . . . , ym} the
difference ring of polynomials over K in variables

{ θµ ◦ yk | µ ∈ Zn
≥0, k = 1, . . . , m } .

Denote by RL the set of linear polynomials in R and use the notations

Θ = { θµ | µ ∈ Zn
≥0 }, degi(θ

µ ◦ yk ) = µi , deg(θµ ◦ yk ) = |µ| =
n∑

i=1

µi .

A difference ideal I in R is an ideal I ∈ R close under the action of any
operator from Θ. If F := {f1, . . . , fk} ⊂ R is a finite set, then the
smallest difference ideal containing F denoted by Id(F ). If F ⊂ RL,
then Id(F ) is linear difference ideal.
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Difference Algebra

A total ordering ≺ over the set of θµy j is a ranking if it satisfies
1 θiθ

µ ◦ y j � θµ ◦ y j

2 θµy j � θν ◦ yk ⇐⇒ θiθ
µ ◦ y j � θiθ

ν ◦ yk ∀ i , j , k , µ, ν.

If µ � ν =⇒ θµ ◦ y j � θν ◦ yk the ranking is orderly.
If i � j =⇒ θµ ◦ y j � θν ◦ yk the ranking is elimination.

Given a ranking �, every linear polynomial f ∈ RL \ {0} has the leading
term a θ ◦ y j , θ ∈ Θ; lc(f ) := a ∈ K \ {0} is the leading coefficient and
lm(f ) := θ ◦ y j is the leading monomial.
In RL a ranking is a monomial order. If F ∈ RL, lm(F ) is the set of the
leading monomials and lmj(F ) is its subset with indeterminate y j .
Thus,

lm(F ) = ∪m
j=1 lmj(F ) .
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Gröbner Bases

Given nonzero linear difference ideal I = Id(G) and term order �, its
generating set G = {g1, . . . , gs} ⊂ RL is a Gröbner basis (GB)
(Buchberger, Winkler’98, Mikhalev et al’99) of I if

∀f ∈ I ∩ RL \ {0} ∃g ∈ G, θ ∈ Θ : lm(f ) = θ ◦ lm(g) .

It follows that f ∈ I is reducible modulo G

f −→
g

f ′ := f − lc(f ) θ ◦ (g/lc(g)), f ′ ∈ I, . . . , f −→
G

0 .

Similarly, a polynomial h ∈ RL, whose terms are reducible (if any)
modulo set F ∈ RL, can be reduced to an irreducible polynomial h̄,
which is said to be in the normal form modulo F (h̄ = NF (h, F )).
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Gröbner Bases

In our algorithmic construction of GB we shall use a restricted set of
reductions called Janet-like (Gerdt, Blinkov’05) and defined as follows.

For a finite set F ∈ RL and order �, partition every lmk (F ) groups
labeled by d0, . . . , di ∈ Z≥0, (0 ≤ i ≤ n), ( [0]k = lmk (F ) )

[d0, . . . , di ]k := {u ∈ lmk (F ) | d0 = 0, d1 = deg1(u), ..., di = degi(u)}.

Define hi(u, lmk (F )) := max{degi(v) | u, v ∈ [d0, ..., di−1]k} − degi(u).
If hi(u, lmk (F )) > 0, then θsi

i where

si := min{degi(v)− degi(u) | u, v ∈ [d0, ..., di−1]k , degi(v) > degi(u)}

is called a difference power for u.
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Gröbner Bases
Denote the set of difference powers for u ∈ lmk (F ) by DP(u, lm(F ))
and define the following subset of Θ

J (u, lm(F )) := {θ ∈ Θ | ∀ϑsi
i ∈ DP(u, lm(F )) : degi(θ ◦ u) < si}.

A GB of I = Id(G) is called Janet-like (Gerdt, Blinkov’05) if

∀f ∈ I ∩ RL \ {0} ∃g ∈ G, θ ∈ J (lm(g), lm(G)) : lm(f ) = θ ◦ lm(g) .

This implies J−reductions and J−normal form: NFJ (f , F ).

Algorithmic characterization of Janet-like GB:

∀g ∈ G ∀ϑ ∈ DP(lm(g), lm(G)) : NFJ (ϑ ◦ g, G) = 0 .

They are similar to (but more compact than) involutive Janet bases.
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Algorithm: Janet-like Gröbner Basis(F ⊂ RL,�)

1: choose f ∈ F with the lowest lm(f ) w.r.t. �
2: G := {f}; Q := F \G
3: do
4: h := 0
5: while Q 6= ∅ and h = 0 do
6: choose p ∈ Q with the lowest lm(p) w.r.t. �
7: Q := Q \ {p}; h := Normal Form(p, G,≺)
8: od
9: if h 6= 0 then

10: for all {g ∈ G | lm(g) = θµ(lm(h)), |µ| > 0} do
11: Q := Q ∪ {g}; G := G \ {g}
12: od
13: G := G ∪ {h}
14: Q := Q ∪ { θβ ◦ g | g ∈ G, β ∈ DP(lm(g), lm(G)) }
15: fi
16: od while Q 6= ∅
17: return G
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Subalgorithm

Algorithm: Normal Form(p, G,≺)

1: h := p
2: while h 6= 0 and h has a monomial u with coefficient b ∈ K
J−reducible modulo G do

3: take g ∈ G s.t. u = θγ(lm(g)) with γ ∈ J (lm(g), lm(G))
4: h := h/b − θγ ◦ (g/ lc(g))
5: od
6: return h

Algorithm Janet-like Gröbner Basis implemented (in an improved
form) in Maple (Gerdt, Robertz’05) is an extension of the polynomial
algorithm (Gerdt, Blinkov’05) to difference ideals.
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FDS for Laplace Equation

Consider the Laplace equation uxx + uyy = 0 and rewrite it as the
conservation law ∮

Γ

−uydx + uxdy = 0 .

Add the integral relations

xj+2∫
xj

uxdx = u(xj+2, y)− u(xj , y),

yk+2∫
yk

uydy = u(x , yk+2)− u(x , yk ) .

Thus, we obtain 3 integral relations for 3 unknown functions

u(x , y), ux(x , y), uy (x , y) .
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FDS for Laplace Equation

Choose midpoint integration method for above rectangular contour.

This yields the discrete system
−((uy )j+1 k − (uy )j+1 k+2) + ((ux)j+2 k+1 − (uy )j k+1) = 0,

(ux)j+1 k · 24h = uj+2 k − uj k ,
(uy )j k+1 · 24h = uj k+2 − uj k .

Its difference form is
(θxθ2

y − θx) ◦ uy + (θ2
xθy − θy ) ◦ ux = 0 ,

24h θx ◦ ux − (θ2
x − 1) ◦ u = 0 ,

24h θy ◦ uy − (θ2
y − 1) ◦ u = 0 .
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FDS for Laplace Equation

Computation of GB (in this case Janet-like GB is the reduced GB) for
elimination order with ux � uy � u and θx � θy gives



θx ◦ ux − 1
24h (θ2

x − 1) ◦ u = 0 ,

θy ◦ ux + θx ◦ uy − 1
24h (θxθy ((θ2

x − 1) + (θ2
y − 1))) ◦ u = 0 ,

θ2
x ◦ uy − 1

24h (θ2
xθy ((θ2

x − 1) + (θ2
y − 1))− θy (θ2

x − 1)) ◦ u = 0 ,

θy ◦ uy − 1
24h (θ2

y − 1) ◦ u = 0 ,

1
24h (θ4

xθ2
y + θ2

xθ4
y − 4θ2

xθ2
y + θ2

x + θ2
y ) ◦ u = 0 .
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FDS for Laplace Equation

The last equation gives the difference scheme written in double nodes

uj+2 k − 2uj k + uj−2 k

44h 2 +
uj k+2 − 2uj k + uj k−2

44h 2 = 0.

Similarly, the trapezoidal rule for the relation integrals generates the
same difference scheme but written in ordinary nodes

uj+1 k − 2uj k + uj−1 k

4h 2 +
uj k+1 − 2uj k + uj k−1

4h 2 = 0.

V.Gerdt (JINR, Dubna, Russia) On Computation of GB for LDS ACAT 2005 27 / 30



Conclusions

GB are the most universal algorithmic tool for linear difference
systems.
In particular, they can be applied to generate differences schemes
for linear PDEs and to reduce multiloop Feynman integrals.
There is an efficient algorithm for construction of GB for linear
difference ideals. The algorithm is based on the concept of
Janet-like reductions.
Janet-like GB are similar to (but more compact than) involutive
Janet bases, and the reduced GB can be easily extracted from the
Janet-like GB without any extra computational costs.
The first implementation in Maple is already available.
Computer experiments and open software for constructing
polynomial Janet and Janet-like bases presented on the Web site
http://invo.jinr.ru.
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