Quantum computing for physics research

Bertrand Georgeot

Quantware group, Lab. de Physique Théorique, UMR 5152 du CNRS Université Paul Sabatier, Toulouse, France www.quantware.ups-tlse.fr

Permanent researchers: Bertrand Georgeot, Dima Shepelyansky (researchers CNRS), Daniel Braun, Klaus Frahm, Robert Fleckinger (professors UPS),

Non permanent researchers: Olivier Giraud, José Lages (postdocs), Oleg Zhirov (visitor) Marcello Terraneo, Stefano Bettelli, Jae-Won Lee (former postdocs) Benjamin Lévi, Andrei Pomeransky (former PhD students)

SUPPORT: ARO/NSA/ARDA (USA), IST-FET EDIQIP (EU), RTN (EU), ACI (France)

- Quantum algorithms for physical systems: complex systems show generically classical or quantum chaos. How to simulate them? What new information can be gained?
- Real quantum computers run with errors and imperfections: dynamical errors different from static imperfections. Effect of these errors on a computation? Appearance of a quantum chaos regime?

Brief idea of quantum computing...

- A quantum computer is not only faster than classical devices, it is something else: new computer science, with new properties ⇒ may change complexity class of problems
- The efficiency of quantum computation compare to classical computation **depends on the problem**: to benefit from the power of quantum computation, one should ask **certain types of questions.**
- Can be realized in many different quantum physical systems
- But: much more sensitive to noise than classical computers ⇒ enormous experimental challenge, but no physical reason why it should not be realizable
- Important applications: code-breaking, simulation of physical systems

Why a quantum computer?

- smaller and smaller size of processors in classical computers \Rightarrow quantum scale will be reached eventually
- easier to simulate quantum mechanics on quantum computers (Feynman)
- massive gain of computing time on some non-quantum problems (Shor, Grover)
- gives insight on quantum mechanics

Quantum computer

- **classical computer**: building blocks: **bits** 0 **or** 1
- quantum computer: building blocks: qubits = two-level system |0 > et |1 > Any state of the form (α|0⟩ + β|1⟩) is allowed, but measurement gives only one value (with probabilities |α|² and |β|²).
- The power of quantum computation does not come from the continuous range of values of α, β. Quantum computer are effectively digital.
- A quantum computer can be thought as a set of n qubits (Hilbert space of dimension $N = 2^n$). General quantum state of the computer: $\sum_{i=0}^{N-1} a_i |i\rangle$ with $\sum_{i=0}^{N-1} |a_i|^2 = 1$.
- Logical operations: unitary transformations in Hilbert space ⇒ reversible computation, no dissipation (≠ classical computation). Only source of irreversibility comes from quantum measurements.
- Quantum information theory \Rightarrow The information contained in a quantum state can be measured in units of qubits

Quantum gates

One acts on the wave function of the quantum computer through **unitary transformation**. In practice, one uses **elementary quantum gates** which are **local** and compose them to build the unitary evolution needed.

- Hadamard gate applied to one qubit $|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2}$; $|1\rangle \rightarrow (|0\rangle |1\rangle)/\sqrt{2}$;
- phase gate applied to one qubit $|0\rangle \rightarrow |0\rangle$; $|1\rangle \rightarrow i|1\rangle$;
- controlled not or CNOT applied to two qubits: $|00\rangle \rightarrow |00\rangle$; $|01\rangle \rightarrow |01\rangle$; $|10\rangle \rightarrow |11\rangle$; $|11\rangle \rightarrow |10\rangle$; the second qubit is changed if the first is in the state $|1\rangle$;
- controlled controlled not or Toffoli gate applied to three qubits: the third qubit is changed if the first two are both in the state $|1\rangle$.

Universal sets of quantum gates are enough to build any unitary transformations (for example, one-qubit gates +CNOT). **Different** universal sets are possible, their choice depends on experimental implementations.

Quantum superposition

SUPERPOSITION PRINCIPLE : \Rightarrow Possibility of manipulation of **many registers** at the same time

 $n \text{ qubits} \Rightarrow N = 2^n \text{ states such as } |00100...\rangle$

Quantum states: of the form $\sum_{i=0}^{N-1} a_i |i\rangle$; information is contained in the amplitudes a_i associated to the registers. To act on N such amplitudes:

- **Classical**: *N* operations needed
- **Quantum**: possible in 1 operations
 - \rightarrow **Exponential** gain (in computing time) possible

Quantum entanglement

Qubits can present correlations impossible to obtain classically (cf Bell's theorem)

- Entanglement of a quantum state describes its degree of non-factorizability in products of one-qubit states.
- Example: Einstein-Podolsky-Rosen paradox; measuring one qubit of the state $(|00\rangle + |11\rangle)/\sqrt{2}$ influences the other one, whatever their distance.
- Entanglement can be **quantified** (although there are competing ways of doing it). It is crucial for, say, quantum teleportation.
- Entanglement is believed to be a key resource in quantum computation, but it is not clearly understood exactly how.

Classical algorithms

- Modify strings of bits 0 and 1 through possibly irreversible transformations (⇒ dissipation, heat production)
- Input: chain of N bits $\Rightarrow n = \log_2 N$ size of the input
- Modifies the input in M operations ⇒ complexity
 M polynomial in n = log₂ N ⇒ polynomial algorithm (complexity class P) (example: arithmetic operations,...)
 M exponential in n ⇒ exponential algorithm (example: factoring, traveling salesman,...)
- Millenium problem: P = NP
- Classical complexity result: complexity class does not depend on the device

Quantum algorithms

 $n \text{ qubits} \Rightarrow N = 2^n \text{ quantum basis states such as 011001...}$

Procedure to perform an algorithm:

- Build an initial state $|\Psi_i\rangle = \sum_{i=0}^{N-1} a_i |i\rangle$. Example: $1/\sqrt{N} \sum_{i=0}^{N-1} |i\rangle$ (uniform superposition) can be build from $|00..00\rangle$ by application of n Hadamard gates.
- Transform it $|\Psi_i > \rightarrow |\Psi_f > = \sum_{i=0}^{N-1} b_i |i| > \text{through a sequence of elementary (local)}$ quantum gates
- Extract information by quantum measurement of $|\Psi_f>$

The result is usually **probabilistic**: quantum measurement gives the right result with a certain probability. The algorithm works if 1) one can **recognize** the right result when it comes and 2) the probability of success is **significant** (especially when n increases).

Complexity of the algorithm is measured by the number of quantum gates needed, taking into account that the process may have to be **iterated** since the result is probabilistic.

http://www.quantware.ups-tlse.fr

Example: adding numbers

Problem: add all numbers between 0 and N-1= 2^{n} -1; needs **three registers** of n, n+1 and n-1 qubits

- **start** from |000...000>
- Apply 2n Hadamard gates $\Rightarrow 1/N \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |i\rangle |j\rangle |0...000\rangle$
- Apply sequence of CNOT (addition mod 2 of bits) and Toffoli gates (putting the carries on the third register), put the sum most significant bit on the second register, then reverse the gates to put the third register to 0 while building the sum on the second register.
- The result is $1/N\sum_{i=0}^{N-1}\sum_{j=0}^{N-1}|i
 angle|i+j
 angle|0...000
 angle$
 - \rightarrow Needs only $\approx 8n$ quantum gates to perform N^2 additions
 - \rightarrow The third (workspace) register is reset to 0 at the end
 - \rightarrow Everything is reversible

 \rightarrow Multiplications and exponentiations can be done in the same way, by using binary decomposition \Rightarrow need $\sim n^2$ (multiplication) and $\sim n^3$ quantum gates (exponentiation).

Quantum addition

Figure 2) V. Vedral, A. Barenco and A. Ekert

Figure 3)

V. Vedral, A. Barenco and A. Ekert

B. Georgeot

Quantum multiplication and exponentiation

Figure 5) V. Vedral, A. Barenco and A. Ekert

multiplication

Figure 6) V. Vedral, A. Barenco and A. Ekert

exponentiation

http://www.quantware.ups-tlse.fr

B. Georgeot

Quantum Fourier Transform

Uses n qubits to transform a vector of size 2^n by:

 $\sum_{k=0}^{2^n-1} a_k |k\rangle \longrightarrow \sum_{l=0}^{2^n-1} (\sum_{k=0}^{2^n-1} e^{2\pi i k l/2^n} a_k) |l\rangle = \sum_{l=0}^{2^n-1} \tilde{a_l} |l\rangle$

Can be written through elementary transformations:

- H_j : Hadamard gate applied to qubit j
- B_{jk} : two-qubit gate applied to the qubits j and k, characterised by $|00\rangle \rightarrow |00\rangle$; $|01\rangle \rightarrow |01\rangle; |10\rangle \rightarrow |10\rangle; |11\rangle \rightarrow \exp(i\pi/2^{k-j})|11\rangle).$

One can verify that the sequence: $\prod_{j=1}^{n} [(\prod_{k=j+1}^{n} B_{jk}) H_j]$

gives the Fourier transform of a vector of size 2^n in n(n+1)/2 operations.

Compare with $\sim N \log N$ for the classical Fast Fourier Transform!

Period of a function

Simon (1994), Shor (1994)

f function on Z periodic period $r : \ f(x) = f(x+r),$ where N/2 < r < N

Two registers a and b with $\sim 2\log N$ qubits each

• build the state
$$2^{-n/2} \Sigma_{x=0}^{2^n-1} |x>|0>$$

- transform this state in $2^{-n/2} \sum_{x=0}^{2^n-1} |x > |f(x) >$
- measure the *b* register. Result: $|u\rangle$. Total state: $M^{-1/2} \sum_{j=0}^{M-1} |x_j\rangle |u\rangle$ where x_j are all x such that $f(x_j) = u$, and $M \approx 2^n/r$.
- apply a Fourier transform, and measure the a register \Rightarrow multiple of $M \approx 2^n/r$.

Period of a function

From Barenco et al., Phys Rev A 54, 139 (1996)

Large numbers factorization

Algorithm of Shor (1994): factorize N in prime factors

- choose a < N randomly
- find the period r of $f(x) = a^x mod(N)$
- for most a, r is even and $a^{r/2} \pm 1$ shares a common factor with N, can be found rapidly

advantages:

 $\Rightarrow \mathsf{Requires} \sim 300 (\log N)^3 \operatorname{logical operations} (\mathsf{classically} \sim \exp(2(\log N)^{1/3} (\log \ln N)^{2/3}))$

 \Rightarrow current limit with classical computers: $N \sim 10^{130} \Rightarrow \sim 2 \times 10^{10}$ operations with ~ 1000 qubits. For $N \sim 10^{260} \Rightarrow \times 10^7$ classically but $\times 8$ quantum mechanically!

 \Rightarrow Quantum computing may change the complexity class!

Other views of Shor's algorithm

Hidden subgroup problem: f function from group G to set X, **constant** on cosets of a subgroup $K \Rightarrow$ find K.

period-finding: G=integers, K=multiples of the period.

Phase estimation: Given a unitary operator U and an eigenvector $|u\rangle$, find efficiently the eigenvalue $e^{i\omega u}$ associated.

(idea: compute $1/\sqrt{N}\sum_{x=0}^{N-1}|t>|U^tu\rangle = 1/\sqrt{N}\sum_{x=0}^{N-1}e^{i\omega_u t}|t>|u\rangle$, then Fourier transforming the first register gives a peak at the eigenvalue)

period-finding: $U_y|f(x)\rangle = |f(x+y)\rangle$

Grover's search algorithm

Problem: given an unstructured list of items *i*, find a particular item i = j

Classically: best solution is going through the list $\Rightarrow \sim N/2$ on average for N items **Quantum**: needs an operator S which recognizes $i = j (S(|j\rangle = -|j\rangle)$ ("oracle")

- Start from $|\Psi_i\rangle \ge 1/\sqrt{N} \sum_{i=0}^{N-1} |i\rangle$ (uniform superposition) = $\sin \theta_0 |j\rangle + \cos \theta_0 / \sqrt{N-1} \sum_{i\neq j} |i\rangle$ with $\sin \theta_0 = 1/\sqrt{N}$
- Apply $S \Rightarrow -\sin \theta_0 |j\rangle + \cos \theta_0 / \sqrt{N-1} \sum_{i \neq j} |i\rangle$
- Apply Fourier Transform + reverse all signs but for |0
 angle + Fourier transform again
- Result: $= \sin(\theta_0 + \phi) |j\rangle + \cos(\theta_0 + \phi) / \sqrt{N 1} \sum_{i \neq j} |i\rangle$
- Iterate $\approx \sqrt{N}$ times $\Rightarrow \sin \theta \approx 1 \Rightarrow$ quantum $\sim \sqrt{N}$. Note: gain proven (\neq Shor)

can be used to solve problems where finding solutions is hard, but testing a candidate is easy

Cryptographic applications

RSA scheme: public-key cryptography (equivalent to a mailbox)

 \rightarrow rests on the fact that some mathematical operations are **non symmetric**: multiplying two numbers is easy, factoring is hard.

 \rightarrow RSA uses the easy direction to **encode**; the hard inverse operation makes it impossible to decode by someone who has not the key.

Shor's algorithm destroys RSA

Grover's algorithm can also be used in cryptographic applications

Note that **quantum cryptography** is an alternative to classical cryptography

Simulation of quantum physical systems

- Many quantum mechanical problems require large Hilbert spaces
- Examples: many-body systems (n particles, m orbitals $\Rightarrow m^n$ states), semiclassical limit...
- Feynman (1982): Use quantum mechanical systems to simulate quantum mechanics
- Lloyd (1996): Algorithm to simulate many-body systems with local interactions.

Quantum maps

Simple evolution operators, but **complex** behaviour. Simplest maps have one degree of freedom, and evolution operator = product of position operator and momentum operator. Typically, one iteration $\Rightarrow N \log N$ classical operations. **Economical in qubits and gates**.

- Baker's map (Schack 1998); fully chaotic map. Essentially partial Quantum Fourier Transforms. Requires n² quantum gates per map iteration. Experimentally **implemented** on a NMR quantum computer with 3 qubits (Weinstein et al., 2002)
- Kicked rotator (Georgeot and Shepelyansky, 2001) $\bar{\psi} = \hat{U}\psi = e^{-ik\cos\hat{\theta}}e^{-iT\hat{n}^2/2}\psi$ Paradigmatic model of quantum chaos. Can simulate **Rydberg atoms** and **Anderson localization** of electrons in solids. Requires $O(n^3)$ quantum gates per map iteration.
- Sawtooth map (Benenti et al, 2001) $\bar{\psi} = \hat{U}\psi = e^{ik(\hat{\theta}-\pi)^2/2}e^{-iT\hat{n}^2/2}\psi$ Requires $3n^2 + n$ quantum gates per map iteration.
- Intermediate map (Giraud and Georgeot, 2005) $\bar{\psi} = \hat{U}\psi = e^{i\alpha\theta}e^{-iT\hat{n}^2/2}\psi$ Requires $2n^2 + 2n$ quantum gates per map iteration.

Quantum maps: example of quantum simulation

 $\hat{U} = e^{-2i\pi \hat{p}^2/N} e^{2i\pi \alpha \hat{q}}$ on a N-dimensional wave function, $N = 2^n$. Needs n qubits.

- In q representation: $e^{2i\pi\alpha\hat{q}}$ is diagonal. $q = \sum_{j=0}^{n-1} q_j 2^j$ (binary decomposition) $\Rightarrow \exp(2i\pi\alpha\hat{q})$ corresponds to the application of the n one-qubit gates $|0\rangle \rightarrow |0\rangle$, $|1\rangle \rightarrow \exp(2i\pi\alpha 2^j)|1\rangle$.
- Quantum Fourier Transform \Rightarrow shift from q to p representation, using n(n+1)/2 gates.
- In p representation, the second operator $e^{-2i\pi \hat{p}^2/N}$ is diagonal. $p = \sum_{j=0}^{n-1} p_j 2^j \Rightarrow \exp(-2i\pi p^2/N) = \prod_{j_1, j_2} \exp(-2i\pi p_{j_1} p_{j_2} 2^{j_1+j_2}/N) \Rightarrow n^2$ two-qubit gates applied to each qubit pair (j_1, j_2) , keeping the states $|00\rangle, |01\rangle, |10\rangle$ unchanged while $|11\rangle \rightarrow \exp(-2i\pi 2^{j_1+j_2}/N)|11\rangle$.
- Quantum Fourier Transform \Rightarrow shift from q to p representation.

In total, one iteration requires $2n^2 + 2n$ gates to be implemented ($N \log N$ classically).

Extraction of information

One map iteration is exponentially fast. Extracting information may require many measurements \Rightarrow Total efficiency of the complete algorithm?

- Localization length (Benenti et al, 2003): Direct measurement of the final wavefunction for localized systems → polynomial gain.
- Form factor (D. Poulin et al, 2003): Use additional circuit to compute TrUⁿ, gives spectral correlations → polynomial gain.
- Fidelity decay (Emerson et al, 2002): Measure the sensitivity to perturbation of the quantum system → possibility of exponential gain.
- **Spectrum** (Abrams and Lloyd, 1999): Measure eigenvalues through versions of phase estimation algorithm \rightarrow **possibility of exponential gain**.
- Wigner function (Miquel et al, 2002, Terraneo et al, 2004): Use additional circuit and/or Quantum Fourier Transform to measure Wigner or Husimi distributions → polynomial gain.

Quantum simulators

- Bose-Einstein condensate of cold atoms in optical lattice
- When lattice parameters are changed, **quantum phase transition** from superfluid to Mott insulator (Bose-Hubbard model) (observed in Greiner et al, Nature 2002).
- Adding electric fields and magnetic fields and changing the parameters of the optical lattice
 ⇒ Possibility to simulate many different many-body Hamiltonians, in a controllable way.

 \rightarrow "quantum analog computer": not universal, but easier to use than a general-purpose quantum computer

 \rightarrow Other physical implementations possible

Simulation of classical physical systems

- Less explored, since less natural than quantum systems. Still, factoring is a classical problem...
- Simulation of **classical spin systems** possible (Lidar and Biham, 1997).
- Classical maps can be simulated on a quantum computer. Example: cat map (Georgeot and Shepelyansky, 2001) y
 y = y+x (mod 1) , x
 x = y+2x (mod 1)
 Discretized classical phase space density → exponential number of points can be iterated in polynomial time.

10 iterations of the cat map

Extraction of information

- Fourier coefficients of the discretized phase space density: apply Quantum
 Fourier transform after iterating the map; possibility of exponential gain.
- Recurrence times (Georgeot 2004): apply period-finding algorithm or Grover's search as subroutines.
 - \rightarrow **Exponential gain** for the cat map.
 - \rightarrow For a larger class of systems, only **polynomial gain**.

Problem: decoherence

- Interaction with the environment destroys the **coherence** of quantum states.
- The need to **manipulate** quantum states to perform the gates further complicates the problem
- Decoherence effects depend on the experimental implementation
- Can be **unitary** or **non unitary**
- Times scales are not exponentially small: in principle can be overcome

Effect of noisy gates (Lévi et al (2003))

Problem: static imperfections

Internal imperfections, e.g. residual coupling between qubits, fluctuations in energy difference of qubits.

Model: $H = \sum_i \Gamma_i \sigma_i^z + \sum_{i < j} J_{ij} \sigma_i^x \sigma_j^x$

2D lattice of n qubits; J_{ij} nearestneighbour coupling random in [-J, J]; Γ_i random in $[\Delta_0 - \delta/2, \Delta_0 + \delta/2]$

Quantum chaos sets in for $J > J_c$. Chaos \Rightarrow mixing of exponentially many multi-qubit states, ergodicity.

 \Rightarrow "melting" of the quantum computer.

 \Rightarrow **destruction** of the computer

without coupling to the environment

Quantum computer melting

Problem: static imperfections

Hamiltonian: **sparse** random matrix two-body interaction \Rightarrow three energy scales: $\Delta_0 =$ one-qubit level spacing $\Delta_c =$ level spacing between directly coupled multi-qubit states $\sim \delta/n$ $\Delta_n =$ level spacing between multi-qubit states: $\sim n2^{-n} \ll \Delta_c$ Quantum chaos sets in for $J > J_c$. **Theory:** (B.G. and D. Shepelyansky, 2000) One multi-qubit state is coupled to $\approx n$ states in an energy interval 2δ . $\Rightarrow J_c \approx \Delta_c \sim \delta/n$

polynomial scaling !

Classical error-correcting codes

Example : Hamming code

 $0000 \rightarrow 0000000; 0001 \rightarrow 1010101; 0010 \rightarrow 0110011; 0011 \rightarrow 1100110, \text{etc...}$

 $4~{\rm bits} \to 7~{\rm bits};$ every codewords differs from all the others in at least $3~{\rm places},$ \Rightarrow any single-bit error can be corrected

Shannon: in general, it is possible to correct noise-induced errors at the price of longer codewords; the process is more efficient if one has information on the type of noise

Quantum error-correcting codes

(Calderbank, Shor (1996), Steane(1996))

- Should correct both **bit errors** and **phase errors**
- add other registers which evolve coherently with the quantum computer
- measure the extra registers \Rightarrow gives information on the noise operator M
- use this information to apply M^{-1} on the computer
- the extra operations produce noise, but one can show that one can correct more noise than produced ⇒ fault-tolerance threshold
- price: increases the number of qubits enormously to cope with usual levels of noise
- Introduces irreversibility, dissipation
- Codes can be tailored to specific types of errors (example: PAREC (Kern, Alber and Shepelyansky, 2004) for static imperfections)
- Recent development: decoherence-free subspaces

So, what is a quantum computer?

A set of n qubits (Hilbert space of dimension 2^n) such that (Steane 1997):

- Each qubit can be prepared in some known state |0>
- $\bullet\,$ Each qubit can be measured in the basis |0> , |1>
- Universal quantum gates can be applied to subsets of qubits
- The qubits do not evolve other than via the above transformations

Experimental challenge: Find two-level systems in physics fulfilling these requirements

Such systems should be **protected from the environment** (long decoherence time) but **easy** to manipulate \Rightarrow contradictory requirements

Key issue: scalability

Realization 1: NMR (Gershenfeld and Chuang, 1997)

- **qubits:** nuclear spins in molecules
- **quantum gates:** oscillating magnetic fields are applied in pulses of controlled duration; hundreds of gates can be applied.
- advantage: uses techniques well developped for e.g. medical applications.
- **problems:** what is measured is the average spin state of a very large number of molecules; signal goes down exponentially with number of qubits; no global entanglement.
- best achievement: factoring 15 with 7 qubits (Vandersypen et al, 2001).

 \rightarrow Good for demonstration purpose, but probably not the good way to build a large quantum computer.

 \rightarrow By far the most advanced to date.

Realization 2: ion trap (Cirac, Zoller (1995))

- **qubits:** 2 internal states of cold ions in a ion trap
- **single-qubit rotation :** by laser pulse
- **two-qubit gates:** laser pulse exciting the collective quantized motion of ions \Rightarrow Coulomb interaction needed
- preparation: optical pumping and laser cooling
- **measurement:** lasers + detection of fluorescence on cameras
- **problems:** temperature: should reach microKelvin to put ions in the ground state
- Two-qubit gate realized, teleportation, entanglement of six ions (Boulder group, Innsbruck group)

Realization 3: Josephson junctions

Two superconducting islands (Bose-Einstein condensates of Cooper pairs) separated by thin insulating layer.

- **qubits:** charge difference between the two islands ("charge qubit") or magnetic flux through a superconducting circuit ("flux qubit").
- quantum gates: inductive couplings between superconducting circuits
- **advantages**: Mesoscopic size; in principle scalable.
- First qubit in 1999 (Nakamura et al), then first long-living qubit 2002 (Vion et al.). Coupling and CNOT between two qubits realized (Yamamoto et al, 2003).

Other proposals

- Lattice of spins (Privman, Vagner, Kventsel (1998), Kane (1998) qubits: nuclear spins; single-qubit rotation, CNOT : electronically controlled through gate voltage (local electric fields) (the hyperfine interaction couples electrons and nuclear spins) + a magnetic field; measurement: currents of spin-polarized electrons; problems: extreme precision for placing atoms and for the electric fields; impurities, etc...
- Optical lattices (Jaksch et al (1999), Brennen et al (1999), Sorensen and Molmer (1999))
 qubits: internal states of atoms; single-qubit rotation: by laser pulses; two-qubit gate: two optical lattices, one of |0 >, one of |1 >, are built, and displaced with respect to each other to create interaction.
- **Optical cavities:** coupling between a single atom or ion (qubit) and a mode of the electromagnetic field in the cavity.
- **Quantum dots:** qubit: spin state of single-electron quantum dot; operations effected by the gating of the tunneling barrier between neighboring dots.

What is the situation?

- Theoretical construction of quantum logical operations: quantum Turing machines.
- Theory of Quantum information.
- Specific algorithms now exist.
- Error-correcting codes now exist.
- Experimental implementation on small systems have been realized (Shor's algorithm on 7 qubits, enabling to factor 15, Vandersypen, Steffen, Breyta, Yannoni, Sherwood, Chuang, *Nature* **414**, 883, (2001); technique:NMR).
- Other types of quantum computers: adiabatic quantum computation, one-way quantum computer.
- New development in quantum algorithm: quantum random walks.

What is the prospect?

- American roadmap (http://qist.lanl.gov/)
- European roadmap (http://www.cordis.lu/ist/fet/qipc-sr.htm)
- Experimental effort is huge; but the problems are so hard that still limited to a few qubits.
- Still, no physical reason why it should not be possible to build a large quantum computer.
- If no sudden breakthrough, a really useful quantum computer (with hundreds or thousands of qubits) will not be built in the near future. In the mean time, demonstration-purpose quantum computers with a few tens of qubits may be built.
- There is a need for new quantum algorithms.

Research organization

- American programs: intelligence and military agencies (National Security Agency and Army Research Office), DARPA (Defense Advanced Research Projects Agency) and NSF
- Europe: "Quantum Information Processing" program, included in "Future and Emerging Technologies" part of IST (Information society technologies). Budget FP7 \approx 30 MEuros
- National programs in many European countries, sometimes parts of nanotechnology programs.

Tendency towards large projects integrating theoreticians and experimentalists

More information ...

- B.Georgeot and D.L.Shepelyansky, *Les ordinateurs quantiques affrontent le chaos*, Images de la physique 2003-2004 (2004), 17 (quant-ph/0307103) (short introduction, in French).
- A. Eckert and R. Josza, *Quantum computation and Shor's factoring algorithm*, Rev. Mod. Phys. **68**, 733 (1996) (mostly factoring algorithm).
- A. Steane, *Quantum Computing*, Rep. Progr. Phys. **61**, 117 (1998) (quant-ph/9708022) (very good review paper).
- G. Benenti, G. Casati and G. Strini, *Principles of quantum computation and information*, World Scientific (2004) (good introduction to the field).
- M. A. Nielsen and I. L. Chuang, *Quantum computation and quantum information*, Cambridge University Press (2000) (very complete reference).